已知二次函数f(x)=ax2+bx+c .
(1)设集合A={x|f(x)=x}.
①若A={1,2},且f(0)=2,求f(x)的解析式;
②若A={1},且a≥1,求f(x)在区间[﹣2,2]上的最大值M(a).
(2)设f(x)的图像与x轴有两个不同的交点,a>0, f(c)=0,且当0<x<c时,f(x)>0.用反证法证明:.
已知在时有极值0。
(1)求常数 a,b的值;
(2)求f(x)的单调区间。
(3)方程f(x)=c在区间[-4,0]上有三个不同的实根时实数的范围。
(本小题满分13分)已知函数.
(1)若对于区间内的任意,总有成立,求实数的取值范围;
(2)若函数在区间内有两个不同的零点,求:
①实数的取值范围; ②的取值范围.
已知函数.
(1)当时,求的零点;
(2)若方程有三个不同的实数解,求的值;
(3)求在上的最小值.[来
已知,函数.
(Ⅰ)当时,求函数的最小值;
(Ⅱ)当时,讨论的图象与的图象的公共点个数.