高中数学

设函数,其中曲线处的切线方程为
(1)求函数的解析式;
(2)若的图像恒在图像的上方,求的取值范围;
(3)讨论关于的方程根的个数.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

 设已知函数
(1)当时,求函数的最大值的表达式
(2)是否存在实数,使得有且仅有3个不等实根,且它们成等差数列,若存在,求出所有的值,若不存在,说明理由.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

(本小题满分12分)函数为常数)的图象过点
(1)求的值;
(2)函数在区间上有意义,求实数的取值范围;
(3)讨论关于的方程为常数)的正根的个数.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

已知函
(1)求实数m的值.
(2)作出函数的图象,并根据图象写出的单调区间

(3)若方程有三个实数解,求实数的取值范围.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

,g(x)=|x|+|6-x|,令F(x)=f(x)+g(x),若关于a的方程有且仅有四个不等实根,则m的取值范围为.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

(本小题满分12分)已知函数
(1)若为函数的极值点,求实数的值;
(2)若时,方程有实数根,求实数的取值范围.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

为二次函数,且.
(1)求的解析式;
(2)设,若函数在实数上没有零点,求的取值范围.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

:方程有两个不等的负根,:方程无实根,若为真,为假,求的取值范围.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

已知函数是偶函数.
(1)求k的值;
(2)若函数y=f(x)的图象与直线没有交点,求b的取值范围.
(3)设,若函数f(x)与h(x)的图象有且只有一个公共点,求实数a的取值范围.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

设函数的导函数为,且.
(1)求的解析式;
(2)若方程在区间上恰有两个不同的实根,求实数的取值范围.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

已知函数.
(Ⅰ) 若1是关于x的方程的一个解,求t的值;
(Ⅱ) 当时,解不等式
(Ⅲ)若函数在区间(-1,2]上有零点,求t的取值范围.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知


已知函数 (为自然对数的底数,).
(1)判断曲线在点处的切线与曲线的公共点个数;
(2)当时,若函数有两个零点,求a的取值范围.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

已知函数
(Ⅰ)当时,证明:为奇函数;
(Ⅱ)若关于的方程有两个不等实数根,求实数的取值范围.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

(本小题满分12分)
已知函数,其中为正实数。
(1)当时,求上的零点个数。
(2)对于定义域内的任意,将的最大值记作,求的表达式。

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

(本题满分12分)已知函数.
(1)求函数的值域;
(2)求满足方程的值.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

高中数学不定方程和方程组解答题