设函数,其中曲线在处的切线方程为(1)求函数的解析式;(2)若的图像恒在图像的上方,求的取值范围;(3)讨论关于的方程根的个数.
已知等比数列中,,求其第4项及前5项和.
已知直线经过抛物线的焦点F,且与抛物线相交于A、B两点.(1)若,求点A的坐标;(2)若直线的倾斜角为,求线段AB的长.
在正三棱柱ABC-A1B1C1中,若BB1=1,AB=,求AB1与C1B所成角的大小。
已知椭圆的两焦点是F1(0,-1),F2(0,1),离心率e= (1)求椭圆方程;(2)若P在椭圆上,且|PF1|-|PF2|=1,求cos∠F1PF2。
已知函数f(x)=(1+x)2-4a lnx(a∈N﹡).(Ⅰ)若函数f(x)在(1,+∞)上是增函数,求a的值;(Ⅱ)在(Ⅰ)的条件下,若关于x的方程f(x)=x2-x+b在区间[1,e]上恰有一个实根,求实数b的取值范围.