已知二次函数满足且的图像在处的切线垂直于直线.(1)求的值;(2)若方程有实数解,求的取值范围.
请考生在(22)、(23)、(24)三题中任选一题作答,如果多答,则按做的第一题记分.作答时用2B铅笔在答题卡上把所选题目对应题号右侧的方框涂黑.(22)(本小题满分10分)选修4—1:几何证明选讲。如图,⊙O是△的外接圆,D是的中点,BD交AC于E.(Ⅰ)求证:CD=DE·DB;(Ⅱ)若,O到AC的距离为1,求⊙O的半径.
(本小题满分12分)已知,设函数,.(Ⅰ)求函数的最大值;(Ⅱ)若是自然对数的底数,当时,是否存在常数、,使得不等式对于任意的正实数都成立?若存在,求出、的值,若不存在,请说明理由.
(本小题满分12分)已知椭圆经过点,一个焦点是.(Ⅰ)求椭圆的方程;(Ⅱ)设椭圆与轴的两个交点为、,点在直线上,直线、分别与椭圆交于、两点.试问:当点在直线上运动时,直线是否恒经过定点?证明你的结论.
(本小题满分12分)如图,在竖直平面内有一个“游戏滑道”,空白部分表示光滑滑道,黑色正方形表示障碍物,自上而下第一行有1个障碍物,第二行有2个障碍物,……,依次类推.一个半径适当的光滑均匀小球从入口A投入滑道,小球将自由下落,已知小球每次遇到正方形障碍物上顶点时,向左、右两边下落的概率都是.记小球遇到第行第个障碍物(从左至右)上顶点的概率为.(Ⅰ)求,的值,并猜想的表达式(不必证明);(Ⅱ)已知,设小球遇到第6行第个障碍物(从左至右)上顶点时,得到的分数为,试求的分布列及数学期望.
(本小题满分12分)如图,在直三棱柱中,平面侧面.(Ⅰ)求证:;(Ⅱ)若直线与平面所成角是,锐二面角的平面角是,试判断与的大小关系,并予以证明.