设已知函数, (1)当时,求函数的最大值的表达式 (2)是否存在实数,使得有且仅有3个不等实根,且它们成等差数列,若存在,求出所有的值,若不存在,说明理由.
若(n为正整数),求证:不等式 对一切正整数n恒成立
设,求证:
在平面直角坐标系中,横坐标、纵坐标均为整数的点称为整点,如果函数的图象恰好通过个整点,则称函数为阶整点函数.有下列函数:①; ② ③ ④,其中是一阶整点函数的是
过曲线外的点作曲线的切线恰有两条,(1)求满足的等量关系;(2)若存在,使成立,求的取值范围.
已知函数,函数是区间上的减函数.(1)求的最大值; (2)若上恒成立,求的取值范围.