高中数学

已知函
(1)求实数m的值.
(2)作出函数的图象,并根据图象写出的单调区间

(3)若方程有三个实数解,求实数的取值范围.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

设函数,那么函数的零点的个数为            

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

已知函数上的图像是连续不断的一条曲线, 在用二分法研究函数的零点时, 第一次计算得到数据:,根据零点的存在性定理知存在零点  , 第二次计算           , 以上横线处应填的内容为(   )

A.
B.
C.
D.
  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

已知函数为实常数) .
(1)求的单调区间;
(2)当时,讨论方程根的个数.
(3)若,且对任意的,都有,求实数a的取值范围.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

关于函数,下列说法错误的是(   )

A.的极小值点
B.函数有且只有1个零点
C.存在正实数,使得恒成立
D.对任意两个正实数,且,若,则
  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

对于函数,如果存在实数使得,那么称的生成函数.
(1)下面给出两组函数,是否为的生成函数?并说明理由;
第一组:
第二组:
(2)设,生成函数,若不等式上有解,求实数t的取值范围.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

函数的零点一定位于区间(   ).

A. B. C. D.
  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

已知函数是定义在上的偶函数,且当时,,其中为常数.若函数有10个零点,则的取值范围是       

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

已知函数f(x)=,曲线在点(0,2)处的切线与轴交点的横坐标为-2.
(Ⅰ)求a;
(Ⅱ)当时,曲线与直线只有一个交点,求x的取值范围.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

已知函数,则方程的实根的个数为( )

A.1 B.2 C.3 D.4
  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

已知定义在R上的函数f(x)的图象是连续不断的,且有如下对应值表:

x
1
2
3
4
f (x)
6.1
2.9
-3.5
-5.5

 
那么函数f (x)一定存在零点的区间是 (   )
A.(-∞,1)        B.(1,2)        C.(2,3)        D.(3,+∞)

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

若方程的两根中,一根在0和1之间,另一根在1和2之间,则的取值范围________.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

设函数
(1)若函数在区间(-2,0)内恰有两个零点,求a的取值范围;
(2)当a=1时,求函数在区间[t,t+3]上的最大值.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

已知函数若存在实数,使函数有两个零点,则实数的取值范围是 (   )

A. B. C. D.
  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

已知关于的方程在区间上有两个不相等的实根,则实数的取值范围是(  )

A. B. C. D.
  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

高中数学不定方程和方程组试题