如图,一个小球从M处投入,通过管道自上而下落A或B或C。已知小球从每个叉口落入左右两个 管道的可能性是相等的.某商家按上述投球方式进行促销活动,若投入的小球落到A,B,C,则分别设为l,
2,3等奖.(I)已知获得l,2,3等奖的折扣率分别为50%,70%,90%.记随变量为获得k(k=1,2,3)等奖的折扣率,求随机变量的分布列及期望;(II)若有3人次(投入l球为l人次)参加促销活动,记随机变量为获得1等奖或2等奖的人次,求.
甲、乙两人轮流投篮,每人每次投一票.约定甲先投中者获胜,一直到有人获胜或每人都已投球3次时投篮结束.设甲每次投篮投中的概率为 ,乙每次投篮投中的概率为 ,且各次投篮互不影响.
(Ⅰ) 求甲获胜的概率;
(Ⅱ)求投篮结束时甲的投篮次数 的分布列与期望
先在甲、乙两个靶.某射手向甲靶射击一次,命中的概率为
,命中得1分,没有命中得0分;向乙靶射击两次,每次命中的概率为
,每命中一次得2分,没有命中得0分.该射手每次射击的结果相互独立.假设该射手完成以上三次射击.
(Ⅰ)求该射手恰好命中一次的概率;
(Ⅱ)求该射手的总得分
的分布列及数学期望
.
(本小题共12分)
甲,乙两人进行乒乓球比赛,约定每局胜者得分,负者得分,比赛进行到有一人比对方多分或打满局时停止.设甲在每局中获胜的概率为,且各局胜负相互独立.已知第二局比赛结束时比赛停止的概率为.
(Ⅰ)求的值;
(Ⅱ)设表示比赛停止时比赛的局数,求随机变量的分布列和数学期望.
某居民小区有两个相互独立的安全防范系统(简称系统) 和 ,系统 和在任意时刻发生故障的概率分别为 和 .
(Ⅰ)若在任意时刻至少有一个系统不发生故障的概率为
,求
的值;
(Ⅱ)设系统
在3次相互独立的检测中不发生故障的次数为随机变量
,求
的概率分布列及数学期望
.
高考数学考试中共有10道选择题,每道选择题都有4个选项,其中有且仅有一个是正确的.评分标准规定:“在每小题给出的四个选项中,只有一项是符合题目要求的,答对得5分,不答或答错得0分”.某考生每道选择题都选出了一个答案,能确定其中有6道题的答案是正确的,而其余题中,有两道题都可判断出有两个选项是错误的,有一道题可以判断一个选项是错误的,还有一道题因不理解题意只能乱猜.
试求出该考生的选择题:
(I)得30分的概率;
(II)得多少分的概率最大;
(III)所得分数的数学期望.
深圳市某校中学生篮球队假期集训,集训前共有6个篮球,其中3个是新球(即没有用过的球), 3 个是旧球(即至少用过一次的球).每次训练,都从中任意取出2 个球,用完后放回.
(1)设第一次训练时取到的新球个数为,求的分布列和数学期望;
(2)求第二次训练时恰好取到一个新球的概率.
某公司向市场投放三种新型产品,经调查发现第一种产品受欢迎的概率为,第二、第三种
产品受欢迎的概率分别为,且不同种产品是否受欢迎相互独立.记为公司向市场投放三种新型产品受欢迎的数量,其分布列为
(Ⅰ)求该公司至少有一种产品受欢迎的概率;
(Ⅱ)求的值;
(Ⅲ)求数学期望.
某公司向市场投放三种新型产品,经调查发现第一种产品受欢迎的概率为,第二、第三种产品受欢迎的概率分别为,且不同种产品是否受欢迎相互独立.记为公司向市场投放三种新型产品受欢迎的数量,其分布列为
(Ⅰ)求该公司至少有一种产品受欢迎的概率;
(Ⅱ)求的值;
(Ⅲ)求数学期望.
某高校在2012年的自主招生考试成绩中随机抽取100名学生的笔试成绩,按成绩共分五组,得到频率分布表如下表所示。
(1)请求出①②位置相应的数字,填在答题卡相应位置上,并补全频率分布直方图;
(2)为了能选出最优秀的学生,高校决定在笔试成绩高的第3、4、5组中用分层抽样的方法抽取12人进入第二轮面试,求第3、4、5组中每组各抽取多少人进入第二轮的面试;假定考生“XXX”笔试成绩为178分,但不幸没入选这100人中,那这样的筛选方法对该生而言公平吗?为什么?
(3)在(2)的前提下,学校决定在12人中随机抽取3人接受“王教授”的面试,设第4组中被抽取参加“王教授”面试的人数为,求的分布列和数学期望.
某厂家拟资助三位大学生自主创业,现聘请两位专家,独立地对每位大学生的创业方案进行评审.假设评审结果为“支持”或“不支持”的概率都是.若某人获得两个“支持”,则给予10万元的创业资助;若只获得一个“支持”,则给予5万元的资助;若未获得“支持”,则不予资助,令表示该公司的资助总额.
(Ⅰ)写出的分布列;
(Ⅱ)求数学期望.
某地区对12岁儿童瞬时记忆能力进行调查.瞬时记忆能力包括听觉记忆能力与视觉记忆能力.某班学生共有40人,下表为该班学生瞬时记忆能力的调查结果.例如表中听觉记忆能力为中等,且视觉记忆能力偏高的学生为3人.
视觉 |
视觉记忆能力 |
||||
偏低 |
中等 |
偏高 |
超常 |
||
听觉 记忆 能力 |
偏低 |
0 |
7 |
5 |
1 |
中等 |
1 |
8 |
3 |
||
偏高 |
2 |
0 |
1 |
||
超常 |
0 |
2 |
1 |
1 |
由于部分数据丢失,只知道从这40位学生中随机抽取一个,视觉记忆能力恰为中等,且听觉记忆能力为中等或中等以上的概率为.
(I)试确定、的值;
(II)从40人中任意抽取3人,求其中至少有一位具有听觉记忆能力或视觉记忆能力超常的学生的概率;
(III)从40人中任意抽取3人,设具有听觉记忆能力或视觉记忆能力偏高或超常的学生人数为,求随机变量的数学期望.
第七届城市运动会2011年10月16日在江西南昌举行,为了搞好接待工作,运动会组委会在某大学招募了12名男志愿者和18名女志愿者。将这30名志愿者的身高编成如右所示的茎叶图(单位:cm):若身高在175cm以上(包括175cm)定义为“高个子”,身高在175cm以下(不包括175cm)定义为“ 非高个子”,且只有“女高个子”才担任“礼仪小姐”。(I)如果用分层抽样的方法从“高个子”中和“非高个子”中提取5人,再从这5人中选2人,那么至少有一人是“高个子”的概率是多少?(II)若从所有“高个子”中选3名志愿者,用表示所选志愿者中能担任“礼仪小姐”的人数,试写出的分布列,并求的数学期望。
甲、乙两名射击运动员,甲射击一次命中10环的概率为0.5,乙射击一次命中10环的概率为s,若他们独立的射击两次,设乙命中10环的次数为X,则EX=,Y为甲与乙命中10环次数的差的绝对值.
求(1) s的值 (2) Y的分布列及期望.