如图,一个小球从M处投入,通过管道自上而下落A或B或C。已知小球从每个叉口落入左右两个 管道的可能性是相等的.某商家按上述投球方式进行促销活动,若投入的小球落到A,B,C,则分别设为l,2,3等奖.(I)已知获得l,2,3等奖的折扣率分别为50%,70%,90%.记随变量为获得k(k=1,2,3)等奖的折扣率,求随机变量的分布列及期望;(II)若有3人次(投入l球为l人次)参加促销活动,记随机变量为获得1等奖或2等奖的人次,求.
已知关于的不等式,其中。 (1)求上述不等式的解; (2)是否存在实数,使得上述不等式的解集中只有有限个整数?若存在,求出使得中整数个数最少的的值;若不存在,请说明理由。
设函数。 (1)当时,求函数的最小值; (2)当时,试判断函数的单调性,并证明。
在中,角、、的对边分别为、、,且。 (1)求的值; (2)若,且,求和的值
设二次函数在区间上的最大值、最小值分别是M、m,集合. (1)若,且,求M和m的值; (2)若,且,记,求的最小值.
(本小题满分16分) 如图,已知底角为60°的等腰梯形ABCD,底边BC长为7cm,腰长为4cm,当一条垂直于底边BC(垂足为F)的直线l从左至右移动(与梯形ABCD有公共点)时,直线l把梯形分成两部分,令BF=x,试写出直线l左边部分的面积y与x的函数关系式.