(本小题共12分)甲,乙两人进行乒乓球比赛,约定每局胜者得分,负者得分,比赛进行到有一人比对方多分或打满局时停止.设甲在每局中获胜的概率为,且各局胜负相互独立.已知第二局比赛结束时比赛停止的概率为.(Ⅰ)求的值;(Ⅱ)设表示比赛停止时比赛的局数,求随机变量的分布列和数学期望.
已知等比数列中,,求其第4项及前5项和.
(本题12分)如图: PA⊥矩形ABCD所在平面,M,N分别是AB,PC的中点。 (1)求证:M N∥平面PAD。 (2)求证:M N⊥CD。 (3) 若∠PDA=45°,求证; MN⊥平面PCD.
(本题14分)如图:在二面角中,A、B,C、D,ABCD为矩形,且PA=AD,M、N依次是AB、PC的中点, (1)求二面角的大小 (2)求证: (1)求异面直线PA和MN所成角的大小
(本题12分)已知圆的方程为求圆的过P点的切线方程。
(本题12分)求过直线和的交点,且垂直于直线的直线方程。