[山东]2012届山东省高考模拟预测卷理科数学试卷(二)
是 ( )
A.最小正周期为的偶函数 | B.最小正周期为的奇函数 |
C.最小正周期为的偶函数 | D.最小正周期为的奇函数 |
下列结论错误的是( )
A.命题“若,则”与命题“若则”互为逆否命题; |
B.命题,命题则为真; |
C.“若则”的逆命题为真命题; |
D.若为假命题,则、均为假命题. |
如右图所示是某一容器的三视图,现向容器中匀速注水,容器中水面的高度随时间变化的可能图象是( )
A. B. C. D.
设为三条不同的直线,为一个平面,下列命题中正确的个数是( )
①若,则与相交
②若则
③若||,||,,则
④若||,,,则||
A.1 | B.2 | C.3 | D.4 |
把函数的图象向左平移个单位,再将图像上所有点的横坐标伸长到原来的2倍(纵坐标不变)所得的图象解析式为,则( )
A. | B. |
C. | D. |
已知正六棱柱的12个顶点都在一个半径为3的球面上,当正六棱柱的体积最大(柱体体积=底面积高)时,其高的值为( )
A. | B. | C. | D. |
如图,在正三角形中,分别为各边的中点,分别为的中点,将沿折成正四面体,则四面体中异面直线与所成的角的余弦值为 .
△ABC中,a,b,c分别是角A,B,C的对边,向量=(2sinB,2-cos2B),,⊥.
(Ⅰ)求角B的大小;
(Ⅱ)若,b=1,求c的值.
某厂家拟资助三位大学生自主创业,现聘请两位专家,独立地对每位大学生的创业方案进行评审.假设评审结果为“支持”或“不支持”的概率都是.若某人获得两个“支持”,则给予10万元的创业资助;若只获得一个“支持”,则给予5万元的资助;若未获得“支持”,则不予资助,令表示该公司的资助总额.
(Ⅰ)写出的分布列;
(Ⅱ)求数学期望.
在各项均为负数的数列中,已知点在函数的图像上,且.
(Ⅰ)求证:数列是等比数列,并求出其通项;
(Ⅱ)若数列的前项和为,且,求.
如图,矩形ABCD和梯形BEFC所在平面互相垂直,BE//CF,BCF=CEF=,AD=,EF=2.
(Ⅰ)求证:AE//平面DCF;
(Ⅱ)当AB的长为何值时,二面角A-EF-C的大小为.
已知椭圆的离心率为,直线l:y=x+2与以原点为圆心、椭圆C1的短半轴长为半径的圆O相切。
(Ⅰ)求椭圆C1的方程;
(Ⅱ)设椭圆C1的左焦点为F1,右焦点为F2,直线l1过点F1,且垂直于椭圆的长轴,动直线l2垂直于l1,垂足为点P,线段PF2的垂直平分线交l2于点M,求点M的轨迹C2的方程;
(Ⅲ)设C2与x轴交于点Q,不同的两点R、S在C2上,且 满足,求的取值范围。