某厂家拟资助三位大学生自主创业,现聘请两位专家,独立地对每位大学生的创业方案进行评审.假设评审结果为“支持”或“不支持”的概率都是.若某人获得两个“支持”,则给予10万元的创业资助;若只获得一个“支持”,则给予5万元的资助;若未获得“支持”,则不予资助,令表示该公司的资助总额.(Ⅰ)写出的分布列;(Ⅱ)求数学期望.
为预防病毒暴发,某生物技术公司研制出一种新流感疫苗,为测试该疫苗的有效性(若疫苗有效的概率小于90%,则认为测试没有通过),公司选定2000个流感样本分成三组,测试结果如下表:
已知在全体样本中随机抽取1个,抽到B组疫苗有效的概率是0.33. (1)求的值; (2)现用分层抽样的方法在全体样本中抽取360个测试结果,问应在C组抽取多少个? (3)已知,求不能通过测试的概率.
已知向量,其中. (1)试判断向量与能否平行,并说明理由? (2)求函数的最小值.
(本小题满分12分) 设函数 (Ⅰ)若函数在其定义域内是增函数,求的取值范围; (Ⅱ)设,方程有两根,记.试探究值的符号,其中是的导函数.
(本小题满分12分) 已知点和直线,作垂足为Q,且 (Ⅰ)求点P的轨迹方程; (Ⅱ)过点C的直线与点P轨迹交于两点,,点,若的面积为,求直线的方程.
(本小题满分12分) 设数列为等差数列,且,,数列的前项和为,且;, (Ⅰ)求数列,的通项公式; (Ⅱ)若,为数列的前项和. 求证:.