甲、乙两名射击运动员,甲射击一次命中10环的概率为0.5,乙射击一次命中10环的概率为s,若他们独立的射击两次,设乙命中10环的次数为X,则EX=,Y为甲与乙命中10环次数的差的绝对值. 求(1) s的值 (2) Y的分布列及期望.
某市规定,高中学生三年在校期间参加不少于小时的社区服务才合格.教育部门在全市随机抽取200位学生参加社区服务的数据,按时间段,,,,(单位:小时)进行统计,其频率分布直方图如图所示. (1)求抽取的200位学生中,参加社区服务时间不少于90小时的学生人数,并估计从全市高中学生中任意选取一人,其参加社区服务时间不少于90小时的概率; (2)从全市高中学生(人数很多)中任意选取3位学生,记为3位学生中参加社区服务时间不少于90小时的人数.试求随机变量的分布列和数学期望.
已知函数. (1)求函数的最小正周期、最大值及取最大值时自变量的取值集合; (2)在△ABC中,角A,B,C的对边分别是a,b,c;若a,b,c成等比数列,且,求的值.
选修4—5:不等式选讲 设函数. (Ⅰ)解不等式; (Ⅱ)若,使得,求实数的取值范围.
选修4—4:坐标系与参数方程 已知直线的参数方程为(为参数),以坐标原点为极点,轴正半轴为极轴,建立极坐标系,曲线的极坐标方程是. (1)写出直线的极坐标方程与曲线的普通方程; (2)若点是曲线上的动点,求到直线距离的最小值,并求出此时点的坐标.
选修4-1:几何证明选讲 如图所示,已知为圆的直径,,是圆上的两个点,于,交于,交于,. (1)求证:是劣弧的中点; (2)求证:.