高中数学

(本小题满分12分)
用半径为R的圆形铁皮剪出一个圆心角为α的扇形,制成一个圆锥形容器,求:扇形的.圆心角多大时,容器的容积最大?并求出此时容器的最大容积.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

(本小题满分12分)
已知曲线上任意一点到点的距离比它到直线的距离小1.
(Ⅰ)求曲线的方程;
(Ⅱ)直线与曲线相交于两点,设直线的斜率分别为
求证:为定值.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分6分.
已知椭圆),其左、右焦点分别为,且成等比数列.
(1)求的值.
(2)若椭圆的上顶点、右顶点分别为,求证:
(3)若为椭圆上的任意一点,是否存在过点的直线,使轴的交点满足?若存在,求直线的斜率;若不存在,请说明理由.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

(本题满分16分;第(1)小题5分,第(2)小题5分,第(3)小题6分)
为坐标平面上的点,直线为坐标原点)与抛物线交于点(异于).
(1)      若对任意,点在抛物线上,试问当为何值时,点在某一圆上,并求出该圆方程
(2)      若点在椭圆上,试问:点能否在某一双曲线上,若能,求出该双曲线方程,若不能,说明理由;
(3)      对(1)中点所在圆方程,设是圆上两点,且满足,试问:是否存在一个定圆,使直线恒与圆相切.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知




(1)求证:点M的纵坐标为定值,且直线PQ经过一定点;
(2)求面积的最小值。

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

(本小题满分15分)已知椭圆的左焦点为F,左右顶点分别为AC
上顶点为B,过F,B,C三点作,其中圆心P的坐标为
(1) 若椭圆的离心率,求的方程;
(2)若的圆心在直线上,求椭圆的方程.

来源:
  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

(本小题满分12分)
已知分别是直线上的两个动点,线段的长为
的中点.
(1)求动点的轨迹的方程;
(2)过点作直线(与轴不垂直)与轨迹交于两点,与轴交于点.若,证明:为定值.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

(本小题满分12分)
已知点和直线,作垂足为Q,且
(Ⅰ)求点P的轨迹方程;
(Ⅱ)过点C的直线m与点P的轨迹交于两点,若的面积为,求直线的方程.

来源:
  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

过△的重心任作一直线分别交,为中线
,,求的值

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图:在△ABC中,=, =,求的值

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图,已知是△的角平分线,∠,求证

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

平面直角坐标系中,直线,上的两动点,且,求使得四边形周长最小时两点的坐标及此时的最小周长

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

的直线分别交轴,轴正半轴于,求△周长和面积最小值

来源:解析几何
  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

从等腰直角△上,按图示方式剪下两个正方形,其中,∠
求这两个正方形的面积之和的最小值

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

(本小题满分14分)
椭圆的离心率为,长轴端点与短轴端点间的距离为
(I)求椭圆的方程;
(II)设过点的直线与椭圆交于两点,为坐标原点,若
为直角三角形,求直线的斜率。

来源:
  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

高中数学平面解析几何的产生──数与形的结合解答题