(本小题满分12分)
用半径为R的圆形铁皮剪出一个圆心角为α的扇形,制成一个圆锥形容器,求:扇形的.圆心角多大时,容器的容积最大?并求出此时容器的最大容积.
(本小题满分12分)
已知曲线上任意一点到点的距离比它到直线的距离小1.
(Ⅰ)求曲线的方程;
(Ⅱ)直线与曲线相交于两点,设直线的斜率分别为
求证:为定值.
本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分6分.
已知椭圆:(),其左、右焦点分别为、,且、、成等比数列.
(1)求的值.
(2)若椭圆的上顶点、右顶点分别为、,求证:.
(3)若为椭圆上的任意一点,是否存在过点、的直线,使与轴的交点满足?若存在,求直线的斜率;若不存在,请说明理由.
(本题满分16分;第(1)小题5分,第(2)小题5分,第(3)小题6分)
设、为坐标平面上的点,直线(为坐标原点)与抛物线交于点(异于).
(1) 若对任意,点在抛物线上,试问当为何值时,点在某一圆上,并求出该圆方程;
(2) 若点在椭圆上,试问:点能否在某一双曲线上,若能,求出该双曲线方程,若不能,说明理由;
(3) 对(1)中点所在圆方程,设、是圆上两点,且满足,试问:是否存在一个定圆,使直线恒与圆相切.
(本小题满分15分)已知椭圆的左焦点为F,左右顶点分别为A、C,
上顶点为B,过F,B,C三点作,其中圆心P的坐标为.
(1) 若椭圆的离心率,求的方程;
(2)若的圆心在直线上,求椭圆的方程.
(本小题满分12分)
已知、分别是直线和上的两个动点,线段的长为
,是的中点.
(1)求动点的轨迹的方程;
(2)过点作直线(与轴不垂直)与轨迹交于两点,与轴交于点.若,,证明:为定值.
(本小题满分12分)
已知点和直线,作垂足为Q,且
(Ⅰ)求点P的轨迹方程;
(Ⅱ)过点C的直线m与点P的轨迹交于两点点,若的面积为,求直线的方程.