(本小题满分12分)用半径为R的圆形铁皮剪出一个圆心角为α的扇形,制成一个圆锥形容器,求:扇形的.圆心角多大时,容器的容积最大?并求出此时容器的最大容积.
(本小题满分12分)甲乙两班进行消防安全知识竞赛,每班出人组成甲乙两支代表队,首轮比赛每人一道必答题,答对则为本队得分,答错不答都得分,已知甲队人每人答对的概率分别为,乙队每人答对的概率都是.设每人回答正确与否相互之间没有影响,用表示甲队总得分.(Ⅰ)求随机变量的分布列及其数学期望;(Ⅱ)求在甲队和乙队得分之和为的条件下,甲队比乙队得分高的概率.
(本小题满分12分)设函数.(Ⅰ)求函数的最小正周期和单调减区间;(Ⅱ)将函数的图象向右平移个单位长度后得到函数的图象,求函数在区间 上的最小值.
选修4—5:不等式选讲已知函数.(Ⅰ)证明:;(Ⅱ)求不等式:的解集.
选修4—4:坐标系与参数方程已知椭圆C:,直线:,(Ⅰ)以原点O为极点,x轴正半轴为极轴建立极坐标系,求椭圆C与直线的极坐标方程;(Ⅱ)已知P是上一动点,射线OP交椭圆C于点R,又点Q在OP上且满足.当点P在上移动时,求点Q在直角坐标系下的轨迹方程.
选修4—1:几何证明选讲如图,和相交于A,B两点,过A作两圆的切线分别交两圆于两点,连结并延长交于点.证明:(Ⅰ); (Ⅱ).