如图,是边长为的正三角形,记位于直线()左侧的图形的面积为.试求的解析式,并画出的图象.
(本小题满分10分)选修4-5:不等式选讲设函数,.(Ⅰ)当时,求不等式的解集;(Ⅱ)若恒成立,求实数的取值范围.
(本小题满分10分)选修4-4:坐标系与参数方程在平面直角坐标系中,直线的参数方程(为参数),以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为:.(Ⅰ)求直线的极坐标方程;(Ⅱ)求直线与曲线交点的极坐标.
(本小题满分10分)选修4-1:几何证明选讲如图,在中,,以为直径的圆交于点,点是边的中点,连接交圆于点.(Ⅰ)求证:是圆的切线;(Ⅱ)求证:.
(本小题满分12分)已知函数.(Ⅰ)求函数的最大值;(Ⅱ)若函数与有相同极值点.①求实数的值;②若对于(为自然对数的底数),不等式恒成立,求实数的取值范围.
(本小题满分12分)已知椭圆的中心在坐标原点,离心率,且其中一个焦点与抛物线的焦点重合.(Ⅰ)求椭圆的方程;(Ⅱ)过点的动直线交椭圆于两点,试问:在坐标平面上是否存在一个定点,使得无论如何转动,以为直径的圆恒过点?若存在,求出点的坐标;若不存在,请说明理由.