(本小题满分12分)已知曲线上任意一点到点的距离比它到直线的距离小1.(Ⅰ)求曲线的方程;(Ⅱ)直线与曲线相交于两点,设直线的斜率分别为求证:为定值.
已知偶函数满足:当时,,当时,(1) 求当时,的表达式;(2) 试讨论:当实数满足什么条件时,函数有4个零点,且这4个零点从小到大依次构成等差数列.
已知函数(I)如果对任意恒成立,求实数a的取值范围;(II)设函数的两个极值点分别为判断下列三个代数式:①②③中有几个为定值?并且是定值请求出;若不是定值,请把不是定值的表示为函数并求出的最小值.
对于函数,若存在,使,则称是的一个"不动点".已知二次函数(1)当时,求函数的不动点;(2)对任意实数,函数恒有两个相异的不动点,求的取值范围;(3)在(2)的条件下,若的图象上两点的横坐标是的不动点,且两点关于直线对称,求的最小值.
将函数的图像向左平移1个单位,再将图像上的所有点的纵坐标伸长到原来的2倍(横坐标不变),得到函数的图像.(1)求函数的解析式和定义域;(2)求函数的最大值.
某海滨浴场的岸边可以近似的看成直线,位于岸边A处的救生员发现海中B处有人求救,救生员没有直接从A处游向B处,而是沿岸边自A跑到距离B最近的D处,然后游向B处.若救生员在岸边的行进速度是6米/秒,在海中的行进速度是2米/秒.(不考虑水流速度等因素)(1)请分析救生员的选择是否正确;(2)在AD上找一点C,使救生员从A到B的时间最短,并求出最短时间.