某海滨浴场的岸边可以近似的看成直线,位于岸边A处的救生员发现海中B处有人求救,救生员没有直接从A处游向B处,而是沿岸边自A跑到距离B最近的D处,然后游向B处.若救生员在岸边的行进速度是6米/秒,在海中的行进速度是2米/秒.(不考虑水流速度等因素)(1)请分析救生员的选择是否正确;(2)在AD上找一点C,使救生员从A到B的时间最短,并求出最短时间.
给出下列四个结论:(1)如图中,是斜边上的点,.以为起点任作一条射线交于点,则点落在线段上的概率是;(2)设某大学的女生体重与身高具有线性相关关系,根据一组样本数据,用最小二乘法建立的线性回归方程为,则若该大学某女生身高增加,则其体重约增加;(3)若是定义在上的奇函数,且满足,则函数的图像关于对称;(4)已知随机变量服从正态分布则.其中正确结论的序号为
(本小题满分10分)选修4-5:不等式选讲已知函数(1)解不等式;(2)设函数,若不等式恒成立,求实数的取值范围.
(本小题满分10分)选修4—4;坐标系与参数方程.已知曲线:,将曲线上的点按坐标变换得到曲线;以直角坐标系原点为极点,轴的正半轴为极轴建立极坐标系,直线的极坐标系方程是.(1)写出曲线和直线的普通方程;(2)求曲线上的点到直线距离的最大值及此时点的坐标.
选修4—1:几何证明选讲如图,在正中,点分别在边上,且,,与交于点.(1)求证:四点共圆;(2)若正的边长为2,求点所在圆的半径.
(本小题满分12分)己知函数.(1)讨论函数的单调区间;(2)设,当时,若对任意的都有,求实数的取值范围;(3)求证:.