某海滨浴场的岸边可以近似的看成直线,位于岸边A处的救生员发现海中B处有人求救,救生员没有直接从A处游向B处,而是沿岸边自A跑到距离B最近的D处,然后游向B处.若救生员在岸边的行进速度是6米/秒,在海中的行进速度是2米/秒.(不考虑水流速度等因素)(1)请分析救生员的选择是否正确;(2)在AD上找一点C,使救生员从A到B的时间最短,并求出最短时间.
.(本小题满分14分) 如图,已知正方体的棱长为2,E、F分别是、的中点,过、E、F作平面交于G.. (Ⅰ)求证:∥; (Ⅱ)求二面角的余弦值; (Ⅲ)求正方体被平面所截得的几何体的体积.
.(本小题满分14分) 某校高三文科分为四个班.高三数学调研测试后, 随机地在各班抽取部分学生进行测试成绩统计,各班被抽取的学生人数恰好成等差数列,人数最少的班被抽取了22人. 抽取出来的所有学生的测试成绩统计结果的频率分布条形图如图5所示,其中120~130(包括120分但不包括130分)的频率为0.05,此分数段的人数为5人. (1) 问各班被抽取的学生人数各为多少人? (2) 在抽取的所有学生中,任取一名学生, 求分数不小于90分的概率.
(本小题满分12分) 已知 (1)若的图象有与轴平行的切线,求的取值范围; (2)若在时取得极值,且恒成立,求的取值范围.
(本小题满分14分) 已知函数. ⑴若曲线在处的切线方程为,求实数和的值; ⑵求证;对任意恒成立的充要条件是; ⑶若,且对任意、,都,求的取值范围.
(本小题满分13分) 在数列中,,点在直线上,设,数列是等比数列. ⑴求出实数; ⑵令,问从第几项开始,数列中连续20项之和为100?