(本小题满分10分)选修4—4;坐标系与参数方程.已知曲线:,将曲线上的点按坐标变换得到曲线;以直角坐标系原点为极点,轴的正半轴为极轴建立极坐标系,直线的极坐标系方程是.(1)写出曲线和直线的普通方程;(2)求曲线上的点到直线距离的最大值及此时点的坐标.
设函数(Ⅰ)试问函数能否在处取得极值,请说明理由;(Ⅱ)若,当时,函数的图像有两个公共点,求的取值范围.
设有极值,(Ⅰ)求的取值范围;(Ⅱ)求极大值点和极小值点.
求函数在区间上的最值.
设函数(1)当时,求的最大值;(2)令,(),其图象上任意一点处切线的斜率≤恒成立,求实数的取值范围;(3)当,,方程有唯一实数解,求正数的值.
已知函数在与时都取得极值 (1)求的值与函数的单调区间 (2)若对,不等式恒成立,求c的取值范围