设函数f(x)=x2+bx+c,其中b,c是某范围内的随机数,分别在下列条件下,求事件A“f(1)≤5且f(0)≤3”发生的概率.(1)若随机数b,c∈{1,2,3,4}.(2)已知随机函数Rand( )产生的随机数的范围为{x|0≤x≤1},b,c是算法语句b="4*Rand(" )和c="4*Rand(" )的执行结果.(注:符号“*”表示“乘号”)
在中,角、、所对的边分别是、、, 向量,且与共线.(Ⅰ)求角的大小; (Ⅱ)设,求的最大值及此时角的大小.
已知函数.(Ⅰ)求函数的最小正周期;(Ⅱ)求函数的单调递减区间;(Ⅲ)求在区间上的最大值和最小值.
已知函数,其中,是自然对数的底数,若,且函数在区间内有零点,求实数的取值范围.
已知函数,其中是自然对数的底数.(Ⅰ)证明:是上的偶函数;(Ⅱ)若关于的不等式在上恒成立,求实数的取值范围;(Ⅲ)已知正数满足:存在,使得成立,试比较与的大小,并证明你的结论.
设函数(为常数,其中e是自然对数的底数)(Ⅰ)当时,求函数的极值点;(Ⅱ)若函数在内存在两个极值点,求的取值范围.