设函数f(x)=x2+bx+c,其中b,c是某范围内的随机数,分别在下列条件下,求事件A“f(1)≤5且f(0)≤3”发生的概率.(1)若随机数b,c∈{1,2,3,4}.(2)已知随机函数Rand( )产生的随机数的范围为{x|0≤x≤1},b,c是算法语句b="4*Rand(" )和c="4*Rand(" )的执行结果.(注:符号“*”表示“乘号”)
已知抛物线:,过点(其中为正常数)任意作一条直线交抛物线于两点,为坐标原点.(1)求的值;(2)过分别作抛物线的切线,试探求与的交点是否在定直线上,证明你的结论.
如图,在斜三棱柱中,点、分别是、的中点,平面.已知,.(Ⅰ)证明:平面;(Ⅱ)求异面直线与所成的角;(Ⅲ)求与平面所成角的正弦值.
甲,乙两人进行乒乓球比赛,约定每局胜者得分,负者得分,比赛进行到有一人比对方多分或打满局时停止.设甲在每局中获胜的概率为,且各局胜负相互独立.已知第二局比赛结束时比赛停止的概率为.(Ⅰ)求的值;(Ⅱ)设表示比赛停止时比赛的局数,求随机变量的分布列和数学期望.
若的图像与直线相切,并且切点横坐标依次成公差为的等差数列.(1)求和的值; (2)在⊿ABC中,a、b、c分别是∠A、∠B、∠C的对边.若是函数图象的一个对称中心,且a=4,求⊿ABC外接圆的面积.
设a为实数,函数,x(1) 当a= 0时,求的极大值、极小值;(2) 若x>0时,,求a的取值范围;.(3) 若函数在区间(0,1)上是减函数,求a的取值范围.