已知函数,其中,是自然对数的底数,若,且函数在区间内有零点,求实数的取值范围.
设二次函数满足下列条件: ①当时,其最小值为0,且成立; ②当时,恒成立. (1)求的值; (2)求的解析式; (3)求最大的实数,使得存在,只要当时,就有成立
如图,已知抛物线,点是轴上的一点,经过点且斜率为的直线与抛物线相交于,两点. (1)当点在轴上时,求证线段的中点轨迹方程; (2)若(为坐标原点),求的值.
如图,在四棱锥中,底面是直角梯形,其中,,,,侧面是边长为的等边三角形,且与底面垂直,为的中点. (1)求证:平面; (2)求三棱锥的体积.
已知数列满足,,. (1)求证:是等差数列; (2)证明:.
在中,角的对边分别为,,,向量,向量,且; (1)求角的大小; (2)设中点为,且;求的最大值及此时的面积.