某校高三某班的一次数学测试成绩的茎叶图和频率分布直方图都受到不同程度的破坏,但可见部分如下图,据此解答如下问题:(1)求分数在[50,60)的频率及全班的人数.(2)求分数在[80,90)之间的频数,并计算频率分布直方图中[80,90)间的矩形的高.(3)若要从分数在[80,100]之间的试卷中任取两份分析学生失分情况,在抽取的试卷中,求至少有一份在[90,100]之间的概率.
已知椭圆的离心率为,一个焦点为.(Ⅰ)求椭圆的方程;(Ⅱ)设直线交椭圆于,两点,若点,都在以点为圆心的圆上,求的值.
如图,矩形中,,.,分别在线段和上,∥,将矩形沿折起.记折起后的矩形为,且平面平面.(Ⅰ)求证:∥平面;(Ⅱ)若,求证:;(Ⅲ)求四面体体积的最大值.
某校高一年级开设研究性学习课程,()班和()班报名参加的人数分别是和.现用分层抽样的方法,从中抽取若干名学生组成研究性学习小组,已知从()班抽取了名同学.(Ⅰ)求研究性学习小组的人数;(Ⅱ)规划在研究性学习的中、后期各安排次交流活动,每次随机抽取小组中名同学发言.求次发言的学生恰好来自不同班级的概率.
在△中,已知.(Ⅰ)求角;(Ⅱ)若,△的面积是,求.
对于数列,定义“变换”:将数列变换成数列,其中,且,这种“变换”记作.继续对数列进行“变换”,得到数列,…,依此类推,当得到的数列各项均为时变换结束.(Ⅰ)试问和经过不断的“变换”能否结束?若能,请依次写出经过“变换”得到的各数列;若不能,说明理由;(Ⅱ)求经过有限次“变换”后能够结束的充要条件;(Ⅲ)证明:一定能经过有限次“变换”后结束.