某校高三某班的一次数学测试成绩的茎叶图和频率分布直方图都受到不同程度的破坏,但可见部分如下图,据此解答如下问题:(1)求分数在[50,60)的频率及全班的人数.(2)求分数在[80,90)之间的频数,并计算频率分布直方图中[80,90)间的矩形的高.(3)若要从分数在[80,100]之间的试卷中任取两份分析学生失分情况,在抽取的试卷中,求至少有一份在[90,100]之间的概率.
如图所示,等腰△ABC的底边AB=6,高CD=3,点E是线段BD上异于点B、D的动点.点F在BC边上,且EF⊥AB.现沿EF将△BEF折起到△PEF的位置,使PE⊥AE.记,用表示四棱锥P-ACFE的体积.(Ⅰ)求 的表达式;(Ⅱ)当x为何值时,取得最大值?(Ⅲ)当V(x)取得最大值时,求异面直线AC与PF所成角的余弦值
在数列中,,.(Ⅰ)设.证明:数列是等差数列;(Ⅱ)求数列的前项和.
某航模兴趣小组的同学,为了测定在湖面上航模航行的速度,采用如下办法:在岸边设置两个观察点A、B ,且 AB长为80米,当航模在C处时,测得∠ABC=105°和∠BAC=30°,经过20 秒后,航模直线航行到 D 处,测得 ∠BAD=90°和 ∠ABD=45°.请你根据以上条件求出航模的速度.(答案保留根号)
在一个特定时段内,以点E为中心的7海里以内海域被设为警戒水域.点E正北55海里处有一个雷达观测站A.某时刻测得一艘匀速直线行驶的船只位于点A北偏东且与点A相距40海里的位置B,经过40分钟又测得该船已行驶到点A北偏东+(其中sin=,)且与点A相距10海里的位置C. (1)求该船的行驶速度(单位:海里/小时); (2)若该船不改变航行方向继续行驶.判断它是否会进入警戒水域,并说明理由.
已知函数f(x)=为偶函数,且函数y=f(x)图象的两相邻对称轴间的距离为 (1)求f()的值; (2)将函数y=f(x)的图象向右平移个单位后,再将得到的图象上各点的横坐标伸长到原来的4倍,纵坐标不变,得到函数y=g(x)的图象,求g(x)的单调递减区间.