在一个特定时段内,以点E为中心的7海里以内海域被设为警戒水域.点E正北55海里处有一个雷达观测站A.某时刻测得一艘匀速直线行驶的船只位于点A北偏东且与点A相距40海里的位置B,经过40分钟又测得该船已行驶到点A北偏东+(其中sin=,)且与点A相距10海里的位置C. (1)求该船的行驶速度(单位:海里/小时); (2)若该船不改变航行方向继续行驶.判断它是否会进入警戒水域,并说明理由.
. 如图1,平面四边形ABCD关于直线AC对称,,把△ABD沿BD折起(如图2),使二面角A―BD―C的余弦值等于。对于图2,完成以下各小题: (1)求A,C两点间的距离; (2)证明:AC平面BCD; (3)求直线AC与平面ABD所成角的正弦值。
已知函数。 (1)若不等式的解集为,求实数的值; (2)在(1)的条件下,若存在实数使成立,求实数m的取值范围。
用总长14.8m的钢条制成一个长方体容器的框架,如果所制做容器的底面的一边比另一边长0.5m,那么高为多少时容器的容积最大?并求出它的最大容积。
已知数列是递增数列,且满足。 (1)若是等差数列,求数列的通项公式; (2)对于(1)中,令,求数列的前项和。
已知两点A。 (1)求的对称轴和对称中心; (2)求的单调递增区间。