商场销售某一品牌的羊毛衫,购买人数是羊毛衫标价的一次函数,标价越高,购买人数越少。把购买人数为零时的最低标价称为无效价格,已知无效价格为每件300元. 现在这种羊毛衫的成本价是100元/ 件,商场以高于成本价的相同价格(标价)出售, 问:(Ⅰ)商场要获取最大利润,羊毛衫的标价应定为每件多少元?(Ⅱ)通常情况下,获取最大利润只是一种“理想结果”,如果商场要获得最大利润的75%,那么羊毛衫的标价为每件多少元?
在四棱锥中,,,面,为的中点,.(1)求证:;(2)求证:面;(3)求三棱锥的体积.
设的三个内角,,所对的边分别为,,.已知.(1)求角的大小;(2)若,求的最大值.
某校为了解高三年级不同性别的学生对体育课改上自习课的态度(肯定还是否定),进行了如下的调查研究.全年级共有名学生,男女生人数之比为,现按分层抽样方法抽取若干名学生,每人被抽到的概率均为.(1)求抽取的男学生人数和女学生人数;(2)通过对被抽取的学生的问卷调查,得到如下列联表:
①完成列联表;②能否有的把握认为态度与性别有关?(3)若一班有名男生被抽到,其中人持否定态度,人持肯定态度;二班有名女生被抽到,其中人持否定态度,人持肯定态度.现从这人中随机抽取一男一女进一步询问所持态度的原因,求其中恰有一人持肯定态度一人持否定态度的概率.解答时可参考下面临界值表:
已知椭圆(a>b>0)抛物线,从每条曲线上取两个点,将其坐标记录于下表中:
(1)求的标准方程;(2)四边形ABCD的顶点在椭圆上,且对角线AC、BD过原点O,若,(i) 求的最值.(ii) 求四边形ABCD的面积;
已知各项均不相等的等差数列的前三项和为18,是一个与无关的常数,若恰为等比数列的前三项,(1)求的通项公式.(2)记数列,的前三项和为,求证: