某航模兴趣小组的同学,为了测定在湖面上航模航行的速度,采用如下办法:在岸边设置两个观察点A、B ,且 AB长为80米,当航模在C处时,测得∠ABC=105°和∠BAC=30°,经过20 秒后,航模直线航行到 D 处,测得 ∠BAD=90°和 ∠ABD=45°.请你根据以上条件求出航模的速度.(答案保留根号)
已知数列满足,. (1)求数列的通项公式; (2)令,数列{bn}的前n项和为Tn,试比较Tn与的大小,并予以证明.
如图,菱形的边长为4,,.将菱形沿对角线折起,得到三棱锥,点是棱的中点,. (1)求证:平面; (2)求证:平面平面; (3)求二面角的余弦值.
某超市为了解顾客的购物量及结算时间等信息,安排一名员工随机收集了在该超市购物的50位顾客的相关数据,如下表所示:
已知这50位顾客中一次购物量少于10件的顾客占80%. (1)确定与的值; (2)若将频率视为概率,求顾客一次购物的结算时间的分布列与数学期望; (3)在(2)的条件下,若某顾客到达收银台时前面恰有2位顾客需结算,且各顾客的结算相互独立,求该顾客结算前的等候时间不超过2分钟的概率.
已知函数,的最大值是1,最小正周期是,其图像经过点. (1)求的解析式; (2)设、、为△ABC的三个内角,且,,求的值.
已知数列是各项均不为0的等差数列,公差为,为其前n项和,且满足,.数列满足,, 为数列的前项和. (1)求数列的通项公式; (2)若对任意的,不等式恒成立,求实数的取值范围; (3)是否存在正整数,使得成等比数列?若存在,求出所有 的值;若不存在,请说明理由.