如图,在某城市中,M,N两地之间有整齐的方格形道路网,A1,A2,A3,A4是道路网中位于一条对角线上的4个交汇处,今在道路网M,N处的甲、乙两人分别要到N,M处,他们分别随机地选择一条沿街的最短路径,同时以每10分钟一格的速度分别向N,M处行走,直到到达N,M为止.(1)求甲经过A2的概率.(2)求甲、乙两人相遇经A2点的概率.(3)求甲、乙两人相遇的概率.
已知函数f(x)=x2-1,g(x)= (1)求f[g(2)]和g[f(2)]的值; (2)求f[g(x)]和g[f(x)]的表达式.
甲同学家到乙同学家的途中有一公园,甲从家到公园的距离与乙从家到公园的距离都是2 km,甲10时出发前往乙家.如图所示,表示甲从家出发到达乙家为止经过的路程y(km)与时间x(分)的关系.试写出y=f(x)的函数解析式.
已知函数f(x)=x2-4ax+2a+6,x∈R. (1)若函数的值域为[0,+∞),求a的值; (2)若函数的值域为非负数集,求函数f(a)=2-a|a+3|的值域.
已知命题p:方程2x2+ax-a2=0在[-1,1]上有解;命题q:只有一个实数x0满足不等式x02+2ax0+2a≤0,若命题“p∨q”是假命题,求实数a的取值范围.
已知命题p:函数f(x)=x2+ax-2在[-1,1]内有且仅有一个零点.命题q:x2+3(a+1)x+2≤0在区间[,]内恒成立.若命题“p且q”是假命题,求实数a的取值范围.