如图,在某城市中,M,N两地之间有整齐的方格形道路网,A1,A2,A3,A4是道路网中位于一条对角线上的4个交汇处,今在道路网M,N处的甲、乙两人分别要到N,M处,他们分别随机地选择一条沿街的最短路径,同时以每10分钟一格的速度分别向N,M处行走,直到到达N,M为止.(1)求甲经过A2的概率.(2)求甲、乙两人相遇经A2点的概率.(3)求甲、乙两人相遇的概率.
为了了解初三学生女生身高情况,某中学对初三女生身高进行了一次测量,所得数据整理后列出了频率分布表如下:
(1)求出表中所表示的数分别是多少? (2)画出频率分布直方图. (3)全体女生中身高在哪组范围内的人数最多?
已知的图象经过点,且在处的切线方程是 求的解析式;
有4个不同的球,四个不同的盒子,把球全部放入盒内. (1)共有多少种放法? (2)恰有一个盒子不放球,有多少种放法? (3)恰有一个盒内放2个球,有多少种放法? (4)恰有两个盒不放球,有多少种放法?
(本小题满分14分) 已知函数. (I) 若且函数为奇函数,求实数; (II) 若试判断函数的单调性; (III) 当,,时,求函数的对称轴或对称中心.
(本小题满分12分) 设椭圆:的焦点分别为、,抛物线:的准线与轴的交点为,且. (I)求的值及椭圆的方程; (II)过、分别作互相垂直的两直线与椭圆分别交于、、、四点(如图), 求四边形面积的最大值和最小值.