已知直线(为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.(1)将曲线C的极坐标方程化为直角坐标方程;(2)设点的直角坐标为,直线与曲线C 的交点为,,求的值.
已知数列的前n项和为. (I)求数列的通项公式; (II)设,求数列的前n项和Tn
设函数. (1)求曲线在点处的切线方程;(2)求函数的单调区间; (3)若函数在区间内单调递增,求的取值范围.
设函数. (Ⅰ)对于任意实数,恒成立,求的最大值; (Ⅱ)若方程有且仅有一个实根,求的取值范围.
已知函数.(I)若函数的图象过原点,且在原点处的切线斜率是,求的值;(II)若函数在区间上不单调,求的取值范围.
做一个圆柱形锅炉,容积为V,两个底面的材料每单位面积的价格为a元,侧面的材料每单位面积价格为b元,问锅炉的底面直径与高的比为多少时,造价最低?