已知奇函数,的图象在x=2处的切线方程为(I )求的解析式;(II)是否存在实数,m,n使得函数在区间上的最小值为m,最大值为n.若存在,求出这样一组实数m,n,若不存在,则说明理由.
给定双曲线。过A(2,1)的直线与双曲线交于两点及,求线段的中点P的轨迹方程.
双曲线的离心率等于2,且与椭圆有相同的焦点,求此双曲线方程
已知+=1的焦点F1、F2,在直线l:x+y-6=0上找一点M,求以F1、F2为焦点,通过点M且长轴最短的椭圆方程.
已知顶点在原点, 焦点在x轴上的抛物线被直线y=2x+1截得的弦长为。求抛物线的方程.
将命题“正偶数不是质数”改写成“若则”的形式,并写出它的逆命题、否命题、逆否命题,并判断它们的真假。