已知复数z=x+yi(x,y∈R)在复平面上对应的点为M.(1)设集合P={-4,-3,-2,0},Q={0,1,2},从集合P中随机取一个数作为x,从集合Q中随机取一个数作为y,求复数z为纯虚数的概率.(2)设x∈[0,3],y∈[0,4],求点M落在不等式组:所表示的平面区域内的概率.
已知函数. (1)若,且,求的值; (2)当取得最小值时,求自变量的集合.
已知函数的图象在点(为自然对数的底数)处的切线的斜率为. (1)求实数的值; (2)若对任意成立,求实数的取值范围; (3)当时,证明:.
如图,动点M与两定点A(-1,0),B(2,0)构成△MAB,且∠MBA=2∠MAB.设动点M的轨迹为C. (1)求轨迹C的方程; (2)设直线(其中)与y轴相交于点P,与轨迹C相交于点Q,R,且,求的取值范围.
在一块耕地上种植一种作物,每季种植成本为1000元,此作物的市场价格和这块地上的产量均具有随机性,且互不影响,其具体情况如下表:
(1)设X表示在这块地上种植1季此作物的利润,求X的分布列; (2)若在这块地上连续3季种植此作物,求这3季中至少有2季的利润不少于2000元的概率.
如图,在三棱锥P-ABQ中,PB⊥平面ABQ,BA=BP=BQ,D,C,E,F分别是AQ,BQ,AP,BP的中点,AQ=2BD,PD与EQ交于点G,PC与FQ交于点H,连结GH. (1)求证:AB∥GH; (2)求平面PAB与平面PCD所成角的正弦值.