如图,在四棱锥中,,,为正三角形,且平面平面.
(1)证明:;
(2)求二面角的余弦值.
如图,在三棱锥中,底面△是边长为的等边三角形,,分别为的中点,且,.
(Ⅰ)求证:平面;
(Ⅱ)求二面角的余弦值.
如图,在四棱锥中,底面为正方形,平面,已知,为线段的中点.
(1)求证:平面;
(2)求二面角的平面角的余弦值.
一个几何体是由圆柱和三棱锥组合而成,点A、B、C在圆柱上底面圆O的圆周上,平面,,,其正视图、侧视图如图所示.
(1)求证:;
(2)求锐二面角的大小.
如图,在四棱锥中,底面为矩形,.
(1)求证,并指出异面直线PA与CD所成角的大小;
(2)在棱上是否存在一点,使得?如果存在,求出此时三棱锥与四棱锥的体积比;如果不存在,请说明理由.
如图,正四棱锥中,,分别为的中点,设为线段上任意一点。
(Ⅰ)求证:;
(Ⅱ)当直线与平面所成的角取得最大值时,求二面角的平面角的余弦值.
如图,在四棱锥中,底面ABCD为菱形,,Q为AD的中点,.
(1)求证:平面PQB;
(2)点M在线段PC上,,试确定t的值,使平面MQB.
如图,在长方体ABCD-A1B1C1D1中,AD=AA1=1,AB=2,点E在棱AB上移动.
(1)证明:D1E⊥A1D;
(2)当E为AB的中点时,求点E到面ACD1的距离;
(3)AE等于何值时,二面角D1-EC-D的大小为.
如图,平面平面,四边形是边长为2的正方形,为上的点,且平面.
(1)求证平面;
(2)设,是否存在,使二面角的余弦值为?若存在,求的值;若不存在,说明理由.
(本小题满分14 分)如图1,在边长为4的菱形中,,于点,将沿折起到的位置,使,如图 2.
(1)求证:平面;
(2)求二面角的余弦值;
(3)判断在线段上是否存在一点,使平面平面?若存在,求出的值;若不存在,说明理由.