高中数学

如图,在正三棱柱ABC-A1B1C1中,A1A=AC,D,E,F分别为线段AC,A1A,C1B的中点.

(1)证明:EF∥平面ABC;
(2)证明:C1E⊥平面BDE.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

是三个互不重合的平面,是两条不重合的直线,则下列命题中正确的是(   )

A.若,则
B.若,则
C.若,则
D.若,则
  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图,三棱柱中,侧棱垂直底面,是棱的中点.

(1)证明:平面⊥平面
(2)平面分此棱柱为两部分,求这两部分体积的比.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

已知是三个不同的平面,.则(     )

A.若,则 B.若,则
C.若,则 D.若,则
  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图,正方体ABCD—A1B1C1D1中,O为底面ABCD的中心,
M为棱BB1的中点,则下列结论中错误的是(  )

A.D1O∥平面A1BC1
B.D1O⊥平面AMC
C.异面直线BC1与AC所成的角等于60°
D.二面角M-AC-B等于45°
  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

三条不重合的直线a,b,c及三个不重合的平面α,β,γ,下列命题正确的是( )

A.若a∥α,a∥β,则α∥β
B.若α∩β=a,α⊥γ,β⊥γ,则a⊥γ
C.若a⊂α,b⊂α,c⊂β,c⊥a,c⊥b,则α⊥β
D.若α∩β=a,c⊂γ,c∥α,c∥β,则a∥γ
  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,直三棱柱ABC﹣A1B1C1中,AC⊥BC,AC=BC=CC1=2,M,N分别为AC,B1C1的中点.

(Ⅰ)求证:MN∥平面ABB1A1
(Ⅱ)线段CC1上是否存在点Q,使A1B⊥平面MNQ?说明理由.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,四棱锥的底面是边长为2的菱形,.已知

(Ⅰ)证明:
(Ⅱ)求三棱锥的体积.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图(1),在三角形ABC中,,点O、M、N分别为线段的中点,将ABO和MNC分别沿BO,MN折起,使平面ABO与平面CMN都与底面OMNB垂直,如图(2)所示.

(1)求证:平面CMN;
(2)求点M到平面CAN的距离.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,在三棱锥中,底面,且,点的中点,且交于点

(1)求证:平面
(2)当时,求三棱锥的体积.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

在等腰梯形中,的中点,将梯形旋转90°,得到梯形(如图).

(1)求证:
(2)求二面角的余弦值.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,在长方体中,,点是线段中点.

(1)求证:
(2)求点到平面的距离.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,已知矩形ABCD中,AB=10,BC=6,将矩形沿对角线BD把△ABD折起,使A移到A1点,且A1在平面BCD上的射影O恰好在CD上.

(1)求证:BC⊥A1D.
(2)求证:平面A1BC⊥平面A1BD.
(3)求三棱锥A1-BCD的体积.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图是棱长为的正方体的平面展开图,则在原正方体中,

平面;   
平面
③CN与BM成角;
④DM与BN垂直.
以上四个命题中,正确命题的序号是____  ____。 (写出所有正确命题的序号)

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

(本小题满分12分)如图,在四棱锥P-ABCD中,PD^平面ABCD,AD=CD,DB平分∠ADC,E为PC的中点.

(Ⅰ)证明:PA∥平面BDE;
(Ⅱ)证明:AC^平面PBD.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

高中数学空间向量的应用试题