如图,在长方体中,,,点是线段中点.(1)求证:;(2)求点到平面的距离.
已知函数f(x)=(ax2+bx+c)ex且f(0)=1,f(1)=0.(1)若f(x)在区间[0,1]上单调递减,求实数a的取值范围;(2)当a=0时,是否存在实数m使不等式2f(x)+4xex≥mx+1≥-x2+4x+1对任意x∈R恒成立?若存在,求出m的值,若不存在,请说明理由.
已知抛物线C:y2=2px(p>0),M点的坐标为(12,8),N点在抛物线C上,且满足=,O为坐标原点.(1)求抛物线C的方程;(2)以M点为起点的任意两条射线l1,l2的斜率乘积为1,并且l1与抛物线C交于A,B两点,l2与抛物线C交于D,E两点,线段AB,DE的中点分别为G,H两点.求证:直线GH过定点,并求出定点坐标.
如图,在矩形ABCD中,AB=2AD=2,O为CD的中点,沿AO将△AOD折起,使DB=.(1)求证:平面AOD⊥平面ABCO;(2)求直线BC与平面ABD所成角的正弦值.
已知数列{an}满足a1=3,an+1=an+p·3n(n∈N*,p为常数),a1,a2+6,a3成等差数列.(1)求p的值及数列{an}的通项公式;(2)设数列{bn}满足bn=,证明:bn≤.
一个袋子装有大小形状完全相同的9个球,其中5个红球编号分别为1,2,3,4,5,4个白球编号分别为1,2,3,4,从袋中任意取出3个球.(1)求取出的3个球编号都不相同的概率;(2)记X为取出的3个球中编号的最小值,求X的分布列与数学期望.