高中数学

如图,在正方形SG1G2G3中,E,F分别是G1G2,G2G3的中点,D是EF的中点,现沿SE,SF及EF把这个正方形折成一个几何体,使G1,G2,G3三点重合于点G,这样,下列五个结论:(1)SG⊥平面EFG;(2)SD⊥平面EFG;(3)GF⊥平面SEF;(4)EF⊥平面GSD;(5)GD⊥平面SEF.正确的是(    )

A.(1)和(3) B.(2)和(5)
C.(1)和(4) D.(2)和(4)
  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图所示,直线垂直于⊙所在的平面,内接于⊙,且为⊙的直径,点为线段的中点.现有结论:①;②平面;③点到平面的距离等于线段的长.其中正确的是(    )

A.①② B.①②③ C.① D.②③
  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图,已知AB⊥平面ACD,DE⊥平面ACD,△ACD为等边三角形,AD=DE=2AB,F为CD的中点.

(1)求证:平面BCE⊥平面CDE;
(2)求二面角B-EF-D的余弦值.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

已知两个不重合的平面和两条不同直线,则下列说法正确的是(     )

A.若
B.若
C.若
D.若
  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图,已知四棱锥的底面为菱形,

(Ⅰ)求证:
(Ⅱ)求二面角的余弦值.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,在直三棱柱中,AB=AC=5,D,E分别为BC, 的中点,四边形是边长为6的正方形.

(1)求证:∥平面
(2)求证:⊥平面
(3)求平面与平面的夹角的余弦值.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,直三棱柱ABC﹣A1B1C1中,AC⊥BC,AC=BC=CC1=2,M,N分别为AC,B1C1的中点.

(Ⅰ)求证:MN∥平面ABB1A1
(Ⅱ)线段CC1上是否存在点Q,使A1B⊥平面MNQ?说明理由.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,四棱锥的底面是边长为2的菱形,.已知

(Ⅰ)证明:
(Ⅱ)求三棱锥的体积.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图(1),在三角形ABC中,,点O、M、N分别为线段的中点,将ABO和MNC分别沿BO,MN折起,使平面ABO与平面CMN都与底面OMNB垂直,如图(2)所示.

(1)求证:平面CMN;
(2)求点M到平面CAN的距离.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,在三棱锥中,底面,且,点的中点,且交于点

(1)求证:平面
(2)当时,求三棱锥的体积.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

在等腰梯形中,的中点,将梯形旋转90°,得到梯形(如图).

(1)求证:
(2)求二面角的余弦值.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,在长方体中,,点是线段中点.

(1)求证:
(2)求点到平面的距离.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,已知矩形ABCD中,AB=10,BC=6,将矩形沿对角线BD把△ABD折起,使A移到A1点,且A1在平面BCD上的射影O恰好在CD上.

(1)求证:BC⊥A1D.
(2)求证:平面A1BC⊥平面A1BD.
(3)求三棱锥A1-BCD的体积.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图是棱长为的正方体的平面展开图,则在原正方体中,

平面;   
平面
③CN与BM成角;
④DM与BN垂直.
以上四个命题中,正确命题的序号是____  ____。 (写出所有正确命题的序号)

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

(本小题满分12分)如图,在四棱锥P-ABCD中,PD^平面ABCD,AD=CD,DB平分∠ADC,E为PC的中点.

(Ⅰ)证明:PA∥平面BDE;
(Ⅱ)证明:AC^平面PBD.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

高中数学空间向量的应用试题