高中数学

已知a,b,c是三条不同的直线,是三个不同的平面,上述命题中真命题的是

A.若a⊥c,b⊥c,则a∥b或a⊥b
B.若,,则;
C.若a,b,c,a⊥b, a⊥c,则
D.若a⊥, b,a∥b,则
  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

中,,斜边以直线为轴旋转得到,且二面角是直二面角,动点在斜边上。

(1)求证:平面平面
(2)当时,求异面直线所成角的正切值;
(3)求与平面所成最大角的正切值.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,在正方体ABCD﹣A1B1C1D1中,M,N分别是BC1,CD1的中点,则下列说法错误的是(  )

A.MN与CC1垂直 B.MN与AC垂直 C.MN与BD平行 D.MN与A1B1平行
  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

(本小题满分12分)如图,在底面是正方形的四棱锥P—ABCD中,PA⊥面ABCD,BD交AC于点E,F是PC中点,G为AC上一点.

(1)求证:BD⊥FG;
(2)当二面角B—PC—D的大小为时,求PC与底面ABCD所成角的正切值.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,已知四棱锥,底面是平行四边形,点在平面上的射影边上,且

(Ⅰ)设的中点,求异面直线所成角的余弦值;
(Ⅱ)设点在棱上,且.求的值.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图,已知四棱锥的底面为菱形,.

(Ⅰ)求证:
(Ⅱ)求二面角的余弦值.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,直三棱柱ABC﹣A1B1C1中,AC⊥BC,AC=BC=CC1=2,M,N分别为AC,B1C1的中点.

(Ⅰ)求证:MN∥平面ABB1A1
(Ⅱ)线段CC1上是否存在点Q,使A1B⊥平面MNQ?说明理由.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,四棱锥的底面是边长为2的菱形,.已知

(Ⅰ)证明:
(Ⅱ)求三棱锥的体积.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图(1),在三角形ABC中,,点O、M、N分别为线段的中点,将ABO和MNC分别沿BO,MN折起,使平面ABO与平面CMN都与底面OMNB垂直,如图(2)所示.

(1)求证:平面CMN;
(2)求点M到平面CAN的距离.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,在三棱锥中,底面,且,点的中点,且交于点

(1)求证:平面
(2)当时,求三棱锥的体积.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

在等腰梯形中,的中点,将梯形旋转90°,得到梯形(如图).

(1)求证:
(2)求二面角的余弦值.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,在长方体中,,点是线段中点.

(1)求证:
(2)求点到平面的距离.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,已知矩形ABCD中,AB=10,BC=6,将矩形沿对角线BD把△ABD折起,使A移到A1点,且A1在平面BCD上的射影O恰好在CD上.

(1)求证:BC⊥A1D.
(2)求证:平面A1BC⊥平面A1BD.
(3)求三棱锥A1-BCD的体积.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图是棱长为的正方体的平面展开图,则在原正方体中,

平面;   
平面
③CN与BM成角;
④DM与BN垂直.
以上四个命题中,正确命题的序号是____  ____。 (写出所有正确命题的序号)

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

(本小题满分12分)如图,在四棱锥P-ABCD中,PD^平面ABCD,AD=CD,DB平分∠ADC,E为PC的中点.

(Ⅰ)证明:PA∥平面BDE;
(Ⅱ)证明:AC^平面PBD.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

高中数学空间向量的应用试题