如图,已知四棱锥的底面为菱形,,,.(Ⅰ)求证:;(Ⅱ)求二面角的余弦值.
如图7,.已知圆O:和定点A(2,1),由圆O外一点向圆O引切线PQ,切点为Q,且满足.(1) 求实数a、b间满足的等量关系;(2) 求线段PQ长的最小值;(3) 若以P为圆心所作的圆P与圆O有公共点,试求半径取最小值时圆P的方程.
已知圆C:x2+y2-2x+4y-4=0,问是否存在斜率是1的直线l,使l被圆C截得的弦AB,以AB为直径的圆经过原点,若存在,写出直线l的方程;若不存在,说明理由.
一束光线l自A(-3,3)发出,射到x轴上,被x轴反射到⊙C:x2+y2-4x-4y+7=0上.(1)求反射线通过圆心C时,光线l的方程;(2)求在x轴上,反射点M的范围.
如图,四棱锥P—ABCD的底面ABCD为正方形,PD⊥底面ABCD,PD=AD.求证:(1)平面PAC⊥平面PBD;(2)求PC与平面PBD所成的角;
已知函数(、b是常数且>0,≠1)在区间[-,0]上有ymax=3,ymin=,试求和b的值.[