高中数学

(本小题满分12分)如图,四棱锥的底面是正方形,每条侧棱的长都是底面边长的倍,为侧棱上的点.

(1)求证:
(2)若平面,侧棱上是否存在一点,使得平面,若存在,确定点的位置;若不存在,试说明理由.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,在梯形ABCD中,AB∥CD,,平面平面,四边形是矩形,,点在线段上。

(1)求证:平面
(2)当为何值时,∥平面?写出结论,并加以证明;
(3)当EM为何值时,AM⊥BE?写出结论,并加以证明。

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

已知l,m,n是空间三条直线,则下列命题正确的是( )
A.若l∥m,l∥n,则m∥n
B.若l⊥m,l⊥n,则m∥n
C.若点A、B不在直线l上,且到l的距离相等,则直线AB∥l
D.若三条直线l,m,n两两相交,则直线l,m,n共面

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

(本题15分)如图,三棱锥中,底面是正三角形,的中点.

(1)求证:平面
(2)设二面角的大小为,求的值.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,在三棱锥中,△PAB和△CAB都是以AB为斜边的等腰直角三角形,若,D是PC的中点.

(1)证明:
(2)求AD与平面ABC所成角的正弦值.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,矩形所在平面与直角三角形所在平面互相垂直,,点分别是的中点.

(1)求证: ∥平面
(2)求证:平面平面

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

已知是两条不同的直线, 是两个不同的平面,给出下列命题:
①若,,则;   
②若,,且,则
③若,,则;    
④若,,且,则
其中正确命题的序号是(   )

A.①④ B.②④ C.②③ D.①③
  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,在四棱锥P﹣ABCD中,PA⊥平面ABCD,底面ABCD是菱形,AB=2,∠BAD=60°.

(Ⅰ)求证:BD⊥平面PAC;
(Ⅱ)当平面PBC与平面PDC垂直时,求PA的长.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

已知是两条不同直线,是一个平面,则下列说法正确的是(  )

A.若.b,则
B.若,b,则
C.若,则
D.若,b⊥,则
  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,在三棱柱ABC-A1B1C1中,已知AB⊥侧面BB1C1C,AB=BC=1,BB1=2,∠BCC1=60°。

(Ⅰ)求证:C1B⊥平面ABC;
(Ⅱ)设(0≤λ≤1),且平面AB1E与BB1E所成的锐二面角的大小为30°,试求λ的值.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

若两个平面互相垂直,则下列命题中正确的是(  )

A.一个平面内的已知直线必垂直于另一个平面内的任意一条直线;
B.一个平面内的已知直线必垂直于另一个平面内的无数条直线;
C.一个平面内的任意一条直线必垂直于另一个平面;
D.过一个平面内任意一点作交线的垂线,则此垂线必垂直于另一个平面.
  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

有三个命题:
①垂直于同一个平面的两条直线平行;
②∀x∈R,x4>x2
③命题“所有能被2整除的整数都是偶数”的否定是:所有能被2整除的整数都不是偶数.
其中正确命题的个数为(  )

A.0 B.1 C.2 D.3
  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

在正方体上任意选择4个顶点,由这4个顶点可能构成如下几何体:
①有三个面为全等的等腰直角三角形,有一个面为等边三角形的四面体;
②每个面都是等边三角形的四面体;
③每个面都是直角三角形的四面体;
④有三个面为不全等的直角三角形,有一个面为等边三角形的四面体.
以上结论其中正确的是________(写出所有正确结论的编号).

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图1,在直角梯形中,的中点,是AC与的交点,将沿折起到图2中的位置,得到四棱锥

(Ⅰ)证明:平面
(Ⅱ)当平面平面时,四棱锥的体积为,求的值.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

三条不重合的直线及三个不重合的平面,下列命题正确的是

A.若,则
B.若,则
C.若,则
D.若,则
  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

高中数学空间向量的应用试题