如图,在三棱柱ABC-A1B1C1中,已知AB⊥侧面BB1C1C,AB=BC=1,BB1=2,∠BCC1=60°。(Ⅰ)求证:C1B⊥平面ABC;(Ⅱ)设(0≤λ≤1),且平面AB1E与BB1E所成的锐二面角的大小为30°,试求λ的值.
在△ABC中,角A,B,C的对边分别为a,b,c,且满足(a-c)=c (1)求角B的大小;(2)若||=,求△ABC面积的最大值.
已知数列{an}的首项a1=1,且满足.(1)设,求证:数列{bn}是等差数列,并求数列{an}的通项公式;(2)设cn=bn·2n,求数列{cn}的前n项和Sn.
已知函数f(x)=cosx•sin(x+)﹣cos2x+,x∈R.(1)求f(x)的最小正周期;(2)求f(x)在闭区间[﹣,]上的最大值和最小值.
数列{an}通项公式,前n项和为Sn,则S2015=
设函数(1)若函数在处有极值,求函数的最大值;(2)是否存在实数,使得关于的不等式在上恒成立?若存在,求出的取值范围;若不存在,说明理由;(3)证明:不等式