(本小题满分12分)如图,四棱锥的底面是正方形,每条侧棱的长都是底面边长的倍,为侧棱上的点.(1)求证:;(2)若平面,侧棱上是否存在一点,使得平面,若存在,确定点的位置;若不存在,试说明理由.
(本小题满分12分) 已知函数,且,。 (1)求函数的解析式;(2)求函数在上的值域。
(本小题满分12分) 已知集合,,若,求实数的取值范围。
(本小题16分)设双曲线:的焦点为F1,F2.离心率为2。 (1)求此双曲线渐近线L1,L2的方程; (2)若A,B分别为L1,L2上的动点,且2,求线段AB中点M的轨迹方程,并说明轨迹是什么曲线。
(本小题满分16分) 如图,在四棱锥中,底面是矩形,平面,,.以的中点为球心、为直径的球面切于点. (1)求证:PD⊥平面; (2)求直线与平面所成的角的正弦值; (3)求点到平面的距离.
如图,直线l:y=x+b与抛物线C:x2=4y相切于点A. (1)求实数b的值; (2)求以点A为圆心,且与抛物线C的准线相切的圆的方程.