(本小题满分12分)在平面直角坐标系xOy中,已知定点A(-2,0)、B(2,0),M是动点,且直线MA与直线MB的斜率之积为,设动点M的轨迹为曲线C.(I)求曲线C的方程;(II)过定点T(-1,0)的动直线与曲线C交于P,Q两点,若,证明:为定值.
从某企业生产的某种产品中抽取100件,测量这些产品的一项质量指标值,由测量表得如下频数分布表:
(1)在答题卡上作出这些数据的频率分布直方图: (2)估计这种产品质量指标值的平均数及方差(同一组中的数据用该组区间的中点值作代表); (3)根据以上抽样调查数据,能否认为该企业生产的这种产品符合“质量指标值不低于95的产品至少要占全部产品的80%”的规定?
已知等差数列的公差=1,前项和为. (1)若; (2)若.
已知函数. (1)当时,与在定义域上单调性相反,求的最小值. (2)当时,求证:存在,使有三个不同的实数解,且对任意且都有.
已知抛物线的焦点F也是椭圆的一个焦点,与的公共弦长为,过点F的直线与相交于两点,与相交于两点,且与同向. (Ⅰ)求的方程; (Ⅱ)若,求直线的斜率.
设数列的前项和为,已知,且. (Ⅰ)证明:; (Ⅱ)求.