(本小题满分12分)在平面直角坐标系xOy中,已知定点A(-2,0)、B(2,0),M是动点,且直线MA与直线MB的斜率之积为,设动点M的轨迹为曲线C.(I)求曲线C的方程;(II)过定点T(-1,0)的动直线与曲线C交于P,Q两点,若,证明:为定值.
意大利数学家菲波拉契,在1202年出版的一书里提出了这样的一个问题:一对兔子饲养到第二个月进入成年,第三个月生一对小兔,以后每个月生一对小兔,所生小兔能全部存活并且也是第二个月成年,第三个月生一对小兔,以后每月生一对小兔.问这样下去到年底应有多少对兔子? 试画出解决此问题的程序框图,并编写相应的程序.
有一列数1,2,5,26,…,你能找出它的规律吗?下面的程序框图所示是输出这个数列的前10项,并求和的算法,试将框图补充完整,并写出相应的程序.
将某科成绩分为3个等级:85—100为“A”;60—84为“B”;60以下为“C”.试用条件分支结构的框图表示某个学生成绩等级的算法.
已知一个三角形的三边边长分别为3,4,5, 设计一个算法,求出它的面积.
用“等值算法”(更相减损之术),求下列两数的最大公约数. (1)225,135;(2)98,280.