已知两个动点、和一个定点均在抛物线上(、与不重合). 设为抛物线的焦点,为其对称轴上一点,若,且、、成等差数列.
(Ⅰ)求的坐标(可用、和表示);
(Ⅱ)若,,、两点在抛物线的准线上的射影分别为、,求四边形面积的取值范围.
已知对任意的实数,直线都不与曲线相切.
(1)求实数的取值范围;
(2)当时,函数的图象上是否存在一点,使得点到轴的距离不小于.试证明你的结论.
已知和是椭圆的左、右焦点,为坐标原点,点在该椭圆上,且轴.
(1)求椭圆的标准方程;
(2)若过点作直线交椭圆于不同的两点,证明:不存在直线,使得.
如图,平面平面,四边形是边长为2的正方形,为上的点,且平面.
(1)求证平面;
(2)设,是否存在,使二面角的余弦值为?若存在,求的值;若不存在,说明理由.
已知函数,其中,.若函数相邻两对称轴的距离等于.
(1)求的值;并求函数在区间的值域;
(2)在△中,、、分别是角、、的对边,若,求边、的长.