已知:如图,一次函数 的图象经过点 , ,与 轴交于点 .点 在线段 上,且 ,过点 作 轴的垂线,垂足为点 .若 .
(1)求这个一次函数的表达式;
(2)已知一开口向下、以直线 为对称轴的抛物线经过点 ,它的顶点为 ,若过点 且垂直于 的直线与 轴的交点为 , ,求这条抛物线的函数表达式.
平面直角坐标系 中,二次函数 的图象与 轴有两个交点.
(1)当 时,求二次函数的图象与 轴交点的坐标;
(2)过点 作直线 轴,二次函数图象的顶点 在直线 与 轴之间(不包含点 在直线 上),求 的范围;
(3)在(2)的条件下,设二次函数图象的对称轴与直线 相交于点 ,求 的面积最大时 的值.
如图,在平面直角坐标系中,二次函数 的图象与 轴交于点 、 (点 在点 的左侧),与 轴交于点 ,过其顶点 作直线 轴,垂足为点 ,连接 、 .
(1)求点 、 、 的坐标;
(2)若 与 相似,求 的值;
(3)点 、 、 、 能否在同一个圆上?若能,求出 的值;若不能,请说明理由.
在平面直角坐标系 中,已知抛物线 为常数).
(1)若抛物线经过点 ,求 的值;
(2)若抛物线经过点 和点 ,且 ,求 的取值范围;
(3)若将抛物线向右平移1个单位长度得到新抛物线,当 时,新抛物线对应的函数有最小值 ,求 的值.
已知二次函数 为常数).
(1)求证:不论 为何值,该函数的图象与 轴总有公共点;
(2)当 取什么值时,该函数的图象与 轴的交点在 轴的上方?
如图1,图形 是由两个二次函数 与 的部分图象围成的封闭图形.已知 、 、 .
(1)直接写出这两个二次函数的表达式;
(2)判断图形 是否存在内接正方形(正方形的四个顶点在图形 上),并说明理由;
(3)如图2,连接 , , ,在坐标平面内,求使得 与 相似(其中点 与点 是对应顶点)的点 的坐标.
如图,二次函数 的图象与 轴交于点 、 ,与 轴交于点 ,点 的坐标为 , 是抛物线上一点(点 与点 、 、 不重合).
(1) ,点 的坐标是 ;
(2)设直线 与直线 相交于点 ,是否存在这样的点 ,使得 ?若存在,求出点 的横坐标;若不存在,请说明理由;
(3)连接 、 ,判断 和 的数量关系,并说明理由.
小贤与小杰在探究某类二次函数问题时,经历了如下过程:
求解体验:
(1)已知抛物线 经过点 ,则 ,顶点坐标为 ,该抛物线关于点 成中心对称的抛物线表达式是 .
抽象感悟:
我们定义:对于抛物线 ,以 轴上的点 为中心,作该抛物线关于点 中心对称的抛物线 ,则我们又称抛物线 为抛物线 的“衍生抛物线”,点 为“衍生中心”.
(2)已知抛物线 关于点 的衍生抛物线为 ,若这两条抛物线有交点,求 的取值范围.
问题解决:
(3)已知抛物线
①若抛物线 的衍生抛物线为 ,两抛物线有两个交点,且恰好是它们的顶点,求 、 的值及衍生中心的坐标;
②若抛物线 关于点 的衍生抛物线为 ,其顶点为 ;关于点 的衍生抛物线为 ,其顶点为 ; ;关于点 的衍生抛物线为 ,其顶点为 为正整数).求 的长(用含 的式子表示).
如图,抛物线 交 轴正半轴于点 ,直线 经过抛物线的顶点 .已知该抛物线的对称轴为直线 ,交 轴于点 .
(1)求 , 的值.
(2) 是第一象限内抛物线上的一点,且在对称轴的右侧,连接 , .设点 的横坐标为 , 的面积为 ,记 .求 关于 的函数表达式及 的范围.
如图,抛物线 过点 ,矩形 的边 在线段 上(点 在点 的左边),点 , 在抛物线上.设 ,当 时, .
(1)求抛物线的函数表达式.
(2)当 为何值时,矩形 的周长有最大值?最大值是多少?
(3)保持 时的矩形 不动,向右平移抛物线.当平移后的抛物线与矩形的边有两个交点 , ,且直线 平分矩形的面积时,求抛物线平移的距离.
已知,点 为二次函数 图象的顶点,直线 分别交 轴正半轴, 轴于点 , .
(1)判断顶点 是否在直线 上,并说明理由.
(2)如图1,若二次函数图象也经过点 , ,且 ,根据图象,写出 的取值范围.
(3)如图2,点 坐标为 ,点 在 内,若点 , , , 都在二次函数图象上,试比较 与 的大小.
设二次函数 , 是常数, .
(1)判断该二次函数图象与 轴的交点的个数,说明理由.
(2)若该二次函数图象经过 , , 三个点中的其中两个点,求该二次函数的表达式.
(3)若 ,点 , 在该二次函数图象上,求证: .
四位同学在研究函数 , 是常数)时,甲发现当 时,函数有最小值;乙发现 是方程 的一个根;丙发现函数的最小值为3;丁发现当 时, ,已知这四位同学中只有一位发现的结论是错误的,则该同学是
A.甲B.乙C.丙D.丁