设二次函数 y = a x 2 + bx − ( a + b ) ( a , b 是常数, a ≠ 0 ) .
(1)判断该二次函数图象与 x 轴的交点的个数,说明理由.
(2)若该二次函数图象经过 A ( − 1 , 4 ) , B ( 0 , − 1 ) , C ( 1 , 1 ) 三个点中的其中两个点,求该二次函数的表达式.
(3)若 a + b < 0 ,点 P ( 2 , m ) ( m > 0 ) 在该二次函数图象上,求证: a > 0 .
列方程(组)解应用题:水上公园的游船有两种类型,一种有4个座位,另一种有6个座位.这两种游船的收费标准是:一条4座游船每小时的租金为60元,一条6座游船每小时的租金为100元.某公司组织38名员工到水上公园租船游览,若每条船正好坐满,并且1小时共花费租金600元,求该公司分别租用4座游船和6座游船的数量.
对于形如x2+2xa+a2这样的二次三项式,可以用公式法将它分解成(x+a)2的形式.但对于二次三项式x2+2xa+3a2,就不能直接运用公式了.小红是这样想的:在二次三项式x2+2xa-3a2中先加上一项a2,使它与x2+2xa的和成为一个完全平方式,再减去a2,整个式子的值不变,于是有:x2+2xa-3a2=(x2+2xa+a2)-a2-3a2=(x+a)2-4a2=(x+a)2-(2a)2=(x+3a)(x-a)像这样,先添一适当项,使式中出现完全平方式,再减去这个项,使整个式子的值不变的方法称为“配方法”.参考小红思考问题的方法,利用“配方法”把a2-6a+8进行因式分解.
看图填空:如图,∠1的同位角是 ,∠1的内错角是 ,如果∠1=∠BCD,那么 ,根据是 ;如果∠ACD=∠EGF,那么 ,根据是 .
解不等式组: .
解方程组 .