初中数学

已知:在平面直角坐标系中,点 O 为坐标原点,点 A x 轴的负半轴上,直线 y = 3 x + 7 2 3 x 轴、 y 轴分别交于 B C 两点,四边形 ABCD 为菱形.

(1)如图1,求点 A 的坐标;

(2)如图2,连接 AC ,点 P ΔACD 内一点,连接 AP BP BP AC 交于点 G ,且 APB = 60 ° ,点 E 在线段 AP 上,点 F 在线段 BP 上,且 BF = AE ,连接 AF EF ,若 AFE = 30 ° ,求 A F 2 + E F 2 的值;

(3)如图3,在(2)的条件下,当 PE = AE 时,求点 P 的坐标.

来源:2018年黑龙江省哈尔滨市中考数学试卷
  • 更新:2021-05-20
  • 题型:未知
  • 难度:未知

阅读材料:

在平面直角坐标系 xOy 中, 点 P ( x 0 y 0 ) 到直线 Ax + By + C = 0 的距离公式为: d = | A x 0 + B y 0 + C | A 2 + B 2

例如: 求点 P 0 ( 0 , 0 ) 到直线 4 x + 3 y 3 = 0 的距离 .

解: 由直线 4 x + 3 y 3 = 0 知, A = 4 B = 3 C = 3

P 0 ( 0 , 0 ) 到直线 4 x + 3 y 3 = 0 的距离为 d = | 4 × 0 + 3 × 0 3 | 4 2 + 3 2 = 3 5

根据以上材料, 解决下列问题:

问题 1 :点 P 1 ( 3 , 4 ) 到直线 y = 3 4 x + 5 4 的距离为  

问题 2 :已知: C 是以点 C ( 2 , 1 ) 为圆心, 1 为半径的圆, C 与直线 y = 3 4 x + b 相切, 求实数 b 的值;

问题 3 :如图, 设点 P 为问题 2 中 C 上的任意一点, 点 A B 为直线 3 x + 4 y + 5 = 0 上的两点, 且 AB = 2 ,请求出 S ΔABP 的最大值和最小值 .

来源:2017年山东省日照市中考数学试卷(已修)
  • 更新:2021-05-16
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中,直线 l : y = 3 3 x + 4 x 轴、 y 轴分别交于点 M N ,高为3的等边三角形 ABC ,边 BC x 轴上,将此三角形沿着 x 轴的正方向平移,在平移过程中,得到△ A 1 B 1 C 1 ,当点 B 1 与原点重合时,解答下列问题:

(1)求出点 A 1 的坐标,并判断点 A 1 是否在直线 l 上;

(2)求出边 A 1 C 1 所在直线的解析式;

(3)在坐标平面内找一点 P ,使得以 P A 1 C 1 M 为顶点的四边形是平行四边形,请直接写出 P 点坐标.

来源:2017年辽宁省盘锦市中考数学试卷
  • 更新:2021-05-14
  • 题型:未知
  • 难度:未知

已知点 P ( x 0 y 0 ) 和直线 y = kx + b ,则点 P 到直线 y = kx + b 的距离证明可用公式 d = | k x 0 - y 0 + b | 1 + k 2 计算.

例如:求点 P ( - 1 , 2 ) 到直线 y = 3 x + 7 的距离.

解:因为直线 y = 3 x + 7 ,其中 k = 3 b = 7

所以点 P ( - 1 , 2 ) 到直线 y = 3 x + 7 的距离为: d = | k x 0 - y 0 + b | 1 + k 2 = | 3 × ( - 1 ) - 2 + 7 | 1 + 3 2 = 2 10 = 10 5

根据以上材料,解答下列问题:

(1)求点 P ( 1 , - 1 ) 到直线 y = x - 1 的距离;

(2)已知 Q 的圆心 Q 坐标为 ( 0 , 5 ) ,半径 r 为2,判断 Q 与直线 y = 3 x + 9 的位置关系并说明理由;

(3)已知直线 y = - 2 x + 4 y = - 2 x - 6 平行,求这两条直线之间的距离.

来源:2016年山东省济宁市中考数学试卷
  • 更新:2021-05-14
  • 题型:未知
  • 难度:未知

如图,一次函数 y = 3 4 x + 6 的图象交 x 轴于点 A 、交 y 轴于点 B ABO 的平分线交 x 轴于点 C ,过点 C 作直线 CD AB ,垂足为点 D ,交 y 轴于点 E

(1)求直线 CE 的解析式;

(2)在线段 AB 上有一动点 P (不与点 A B 重合),过点 P 分别作 PM x 轴, PN y 轴,垂足为点 M N ,是否存在点 P ,使线段 MN 的长最小?若存在,请直接写出点 P 的坐标;若不存在,请说明理由.

来源:2017年辽宁省鞍山市中考数学试卷
  • 更新:2021-05-13
  • 题型:未知
  • 难度:未知

如图:一次函数 y = - 3 4 x + 3 的图象与坐标轴交于 A B 两点,点 P 是函数 y = - 3 4 x + 3 ( 0 < x < 4 ) 图象上任意一点,过点 P PM y 轴于点 M ,连接 OP

(1)当 AP 为何值时, ΔOPM 的面积最大?并求出最大值;

(2)当 ΔBOP 为等腰三角形时,试确定点 P 的坐标.

来源:2018年宁夏中考数学试卷
  • 更新:2021-05-13
  • 题型:未知
  • 难度:未知

操作:“如图1, P 是平面直角坐标系中一点 ( x 轴上的点除外),过点 P PC x 轴于点 C ,点 C 绕点 P 逆时针旋转 60 ° 得到点 Q .”我们将此由点 P 得到点 Q 的操作称为点的 T 变换.

(1)点 P ( a , b ) 经过 T 变换后得到的点 Q 的坐标为   ;若点 M 经过 T 变换后得到点 N ( 6 , - 3 ) ,则点 M 的坐标为       

(2) A 是函数 y = 3 2 x 图象上异于原点 O 的任意一点,经过 T 变换后得到点 B

①求经过点 O ,点 B 的直线的函数表达式;

②如图2,直线 AB y 轴于点 D ,求 ΔOAB 的面积与 ΔOAD 的面积之比.

来源:2017年江苏省无锡市中考数学试卷
  • 更新:2021-05-12
  • 题型:未知
  • 难度:未知

阅读理解:

如图①,图形 l 外一点 P 与图形 l 上各点连接的所有线段中,若线段 P A 1 最短,则线段 P A 1 的长度称为点 P 到图形 l 的距离.

例如:图②中,线段 P 1 A 的长度是点 P 1 到线段 AB 的距离;线段 P 2 H 的长度是点 P 2 到线段 AB 的距离.

解决问题:

如图③,平面直角坐标系 xOy 中,点 A B 的坐标分别为 ( 8 , 4 ) ( 12 , 7 ) ,点 P 从原点 O 出发,以每秒1个单位长度的速度向 x 轴正方向运动了 t 秒.

(1)当 t = 4 时,求点 P 到线段 AB 的距离;

(2) t 为何值时,点 P 到线段 AB 的距离为5?

(3) t 满足什么条件时,点 P 到线段 AB 的距离不超过6?(直接写出此小题的结果)

来源:2017年江苏省泰州市中考数学试卷
  • 更新:2021-05-12
  • 题型:未知
  • 难度:未知

如图,已知一次函数 y = - 4 3 x + 4 的图象是直线 l ,设直线 l 分别与 y 轴、 x 轴交于点 A B

(1)求线段 AB 的长度;

(2)设点 M 在射线 AB 上,将点 M 绕点 A 按逆时针方向旋转 90 ° 到点 N ,以点 N 为圆心, NA 的长为半径作 N

①当 N x 轴相切时,求点 M 的坐标;

②在①的条件下,设直线 AN x 轴交于点 C ,与 N 的另一个交点为 D ,连接 MD x 轴于点 E ,直线 m 过点 N 分别与 y 轴、直线 l 交于点 P Q ,当 ΔAPQ ΔCDE 相似时,求点 P 的坐标.

来源:2017年江苏省常州市中考数学试卷
  • 更新:2021-05-12
  • 题型:未知
  • 难度:未知

在平面直角坐标系中,直线 y = kx + 4 ( k 0 ) x 轴于点 A ( 8 , 0 ) ,交 y 轴于点 B

(1) k 的值是  

(2)点 C 是直线 AB 上的一个动点,点 D 和点 E 分别在 x 轴和 y 轴上.

①如图,点 E 为线段 OB 的中点,且四边形 OCED 是平行四边形时,求 OCED 的周长;

②当 CE 平行于 x 轴, CD 平行于 y 轴时,连接 DE ,若 ΔCDE 的面积为 33 4 ,请直接写出点 C 的坐标.

来源:2019年辽宁省沈阳市中考数学试卷
  • 更新:2021-05-12
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中,点 F 的坐标为 ( 0 , 10 ) .点 E 的坐标为 ( 20 , 0 ) ,直线 l 1 经过点 F 和点 E ,直线 l 1 与直线 l 2 : y = 3 4 x 相交于点 P

(1)求直线 l 1 的表达式和点 P 的坐标;

(2)矩形 ABCD 的边 AB y 轴的正半轴上,点 A 与点 F 重合,点 B 在线段 OF 上,边 AD 平行于 x 轴,且 AB = 6 AD = 9 ,将矩形 ABCD 沿射线 FE 的方向平移,边 AD 始终与 x 轴平行.已知矩形 ABCD 以每秒 5 个单位的速度匀速移动(点 A 移动到点 E 时停止移动),设移动时间为 t ( t > 0 )

①矩形 ABCD 在移动过程中, B C D 三点中有且只有一个顶点落在直线 l 1 l 2 上,请直接写出此时 t 的值;

②若矩形 ABCD 在移动的过程中,直线 CD 交直线 l 1 于点 N ,交直线 l 2 于点 M .当 ΔPMN 的面积等于18时,请直接写出此时 t 的值.

来源:2018年辽宁省沈阳市中考数学试卷
  • 更新:2021-05-10
  • 题型:未知
  • 难度:未知

如图,矩形 AOCB 的顶点 A C 分别位于 x 轴和 y 轴的正半轴上,线段 OA OC 的长度满足方程 | x 15 | + y 13 = 0 ( OA > OC ) ,直线 y = kx + b 分别与 x 轴、 y 轴交于 M N 两点,将 ΔBCN 沿直线 BN 折叠,点 C 恰好落在直线 MN 上的点 D 处,且 tan CBD = 3 4

(1)求点 B 的坐标;

(2)求直线 BN 的解析式;

(3)将直线 BN 以每秒1个单位长度的速度沿 y 轴向下平移,求直线 BN 扫过矩形 AOCB 的面积 S 关于运动的时间 t ( 0 < t 13 ) 的函数关系式.

来源:2017年黑龙江省七台河市中考数学试卷
  • 更新:2021-04-26
  • 题型:未知
  • 难度:未知

如图,四边形 ABCD 的顶点坐标分别为 A ( 4 , 0 ) B ( 2 , 1 ) C ( 3 , 0 ) D ( 0 , 3 ) ,当过点 B 的直线 l 将四边形 ABCD 分成面积相等的两部分时,直线 l 所表示的函数表达式为 (    )

A. y = 11 10 x + 6 5 B. y = 2 3 x + 1 3 C. y = x + 1 D. y = 5 4 x + 3 2

来源:2019年广西桂林市中考数学试卷
  • 更新:2021-04-28
  • 题型:未知
  • 难度:未知

如图,以菱形 ABCD 对角线交点为坐标原点,建立平面直角坐标系, A B 两点的坐标分别为 ( 2 5 0 ) ( 0 , 5 ) ,直线 DE DC AC E ,动点 P 从点 A 出发,以每秒2个单位的速度沿着 A D C 的路线向终点 C 匀速运动,设 ΔPDE 的面积为 S ( S 0 ) ,点 P 的运动时间为 t 秒.

(1)求直线 DE 的解析式;

(2)求 S t 之间的函数关系式,并写出自变量 t 的取值范围;

(3)当 t 为何值时, EPD + DCB = 90 ° ?并求出此时直线 BP 与直线 AC 所夹锐角的正切值.

来源:2016年四川省绵阳市中考数学试卷
  • 更新:2021-04-23
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中,四边形OABC的顶点O是坐标原点,点A在第一象限,点C在第四象限,点Bx轴的正半轴上. OAB 90 ° OA AB OBOC的长分别是一元二次方程 x 2 11 x + 30 0 的两个根 OB OC

(1)求点A和点B的坐标.

(2)点P是线段OB上的一个动点(点P不与点OB重合),过点P的直线ly轴平行,直线l交边OA或边AB于点Q,交边OC或边BC于点R.设点P的横坐标为t,线段QR的长度为m.已知 t 4 时,直线l恰好过点C.当 0 t 3 时,求m关于t的函数关系式.

(3)当 m 3 . 5 时,请直接写出点P的坐标.

来源:2016年黑龙江省七台河市中考数学试卷(农垦、森工用)
  • 更新:2021-04-16
  • 题型:未知
  • 难度:未知

初中数学一次函数综合题试题