已知点 P ( x 0 , y 0 ) 和直线 y = kx + b ,则点 P 到直线 y = kx + b 的距离证明可用公式 d = | k x 0 - y 0 + b | 1 + k 2 计算.
例如:求点 P ( - 1 , 2 ) 到直线 y = 3 x + 7 的距离.
解:因为直线 y = 3 x + 7 ,其中 k = 3 , b = 7 .
所以点 P ( - 1 , 2 ) 到直线 y = 3 x + 7 的距离为: d = | k x 0 - y 0 + b | 1 + k 2 = | 3 × ( - 1 ) - 2 + 7 | 1 + 3 2 = 2 10 = 10 5 .
根据以上材料,解答下列问题:
(1)求点 P ( 1 , - 1 ) 到直线 y = x - 1 的距离;
(2)已知 ⊙ Q 的圆心 Q 坐标为 ( 0 , 5 ) ,半径 r 为2,判断 ⊙ Q 与直线 y = 3 x + 9 的位置关系并说明理由;
(3)已知直线 y = - 2 x + 4 与 y = - 2 x - 6 平行,求这两条直线之间的距离.
解一元一次不等式, 并把它的解集在数轴上表示出来 .
2 - x > x - 6 3
计算: | - 2 | + ( 2016 + π ) 0 + ( 1 2 ) - 2 - 2 sin 45 ° .
(1)计算: 27 + ( - 1 2 ) - 2 - 3 tan 60 ° + ( π - 2 ) 0 .
(2)解方程组: 3 x - 2 y = - 8 , ① x + 2 y = 0 , ②
计算:
(1) ( 2 2 ) 2 - | - 4 | + 3 - 1 × 6 + 2 0 .
(2) x - 2 x - 1 · x 2 - 1 x 2 - 4 x + 4 - 1 x - 2 .
(1)计算: ( - 2 ) 3 + ( 1 3 ) - 2 - 8 · sin 45 °
(2)分解因式: ( y + 2 x ) 2 - ( x + 2 y ) 2 .