如图,在正方形SG1G2G3中,E,F分别是G1G2,G2G3的中点,D是EF的中点,现沿SE,SF及EF把这个正方形折成一个几何体,使G1,G2,G3三点重合于点G,这样,下列五个结论:(1)SG⊥平面EFG;(2)SD⊥平面EFG;(3)GF⊥平面SEF;(4)EF⊥平面GSD;(5)GD⊥平面SEF.正确的是( )
| A.(1)和(3) | B.(2)和(5) |
| C.(1)和(4) | D.(2)和(4) |
如图,在四棱锥
中,底面ABCD为菱形,
,Q为AD的中点,
.
(1)求证:
平面PQB;
(2)点M在线段PC上,
,试确定t的值,使
平面MQB.
如图(1),在三角形ABC中,
,
,点O、M、N分别为线段的中点,将ABO和MNC分别沿BO,MN折起,使平面ABO与平面CMN都与底面OMNB垂直,如图(2)所示.
(1)求证:
平面CMN;
(2)求点M到平面CAN的距离.
如图,已知正三角形
三个顶点都在半径为2的球面上,球心
到平面
的距离为1,点
是线段
的中点,过点
作球
的截面,则截面面积的最小值是()
A.![]() |
B.![]() |
C.![]() |
D.![]() |
如图,在四棱锥P-ABCD 中,AB∥CD ,AB⊥AD,CD=2AB,平面PAD⊥底面ABCD,PA⊥AD,E和F分别为CD和PC的中点.求证:
(1)BE∥平面PAD;
(2)平面BEF⊥平面PCD.
已知某几何体的三视图和直观图如图所示,其正视图为矩形,侧视图为等腰直角三角形,俯视图为直角梯形.

(Ⅰ)求证:
;
(Ⅱ)求直线
与平面
所成角的余弦值;
(Ⅲ)设
为
中点,在棱
上是否存在一点
,使
平面
?若存在,求
的值;若不存在,请说明理由.
如图,在长方体ABCD-A1B1C1D1中,AD=AA1=1,AB=2,点E在棱AB上移动.
(1)证明:D1E⊥A1D;
(2)当E为AB的中点时,求点E到面ACD1的距离;
(3)AE等于何值时,二面角D1-EC-D的大小为
.
三棱锥S—ABC中,SA⊥底面ABC,SA=4,AB=3,D为AB的中点∠ABC=90°,则点D到面SBC的距离等于()
A.![]() |
B.![]() |
C.![]() |
D.![]() |