如图,已知∠ACB=90°,AC=BC,BE⊥CE于E,AD⊥CE于D,CE与AB相交于F.
(1)求证:△CEB≌△ADC;
(2)若AD=9cm,DE=6 cm,求BE的长.
(10分) 如图①,一个无盖的正方体盒子的棱长为6厘米,顶点C1处有一只昆虫甲,在盒子的内部顶点A处有一只昆虫乙.(盒壁的厚度忽略不计)
(1)假设昆虫甲在顶点C1处静止不动,如图①,在盒子的内部我们先取棱BB1的中点E,再连结AE、EC1.昆虫乙如果沿路径A→E→Cl 爬行 , 那么可以在最短的时间内捕捉到昆虫甲.仔细体会其中的道理,并在图①中画出另一条路径,使昆虫乙从顶点A沿这条路径爬行,同样可以在最短的时间内捕捉到昆虫甲.(请简要说明画法)
(2)如图②,假设昆虫甲从顶点C1以1厘米/秒的速度沿盒子的棱C1D1向D1爬行,同时昆虫乙从顶点A以2.5厘米/秒的速度在盒壁上爬行,那么昆虫乙至少需要多长时间才能捕捉到昆虫甲?
(10分) 如图,Rt△ABC中,∠C = 90°,把Rt△ABC绕着B点逆时针旋转,得到Rt△DBE,点E在AB上.
(1)若∠BDA = 70°,求∠BAC的度数.
(2)若BC = 8,AC = 6,求△ABD中AD边上的高.
(10分) 铭润超市用5000元购进一批新品种的苹果进行试销,由于销售状况良好,超市又调拨11000元资金购进该品种苹果,但这次的进货价比试销时每千克多了0.5元,购进苹果数量是试销时的2倍.
(1)试销时该品种苹果的进货价是每千克多少元?
(2)如果超市将该品种苹果按每千克7元的定价出售,当大部分苹果售出后,余下的400千克按定价的七折(“七折”即定价的70%)售完,那么超市在这两次苹果销售中共盈利多少元?
(12分) 如图,在△ABC中,ME和NF分别垂直平分AB和AC.
(1) 若BC =" 10" cm,试求△AMN的周长.
(2) 在△ABC中,AB = AC,∠BAC = 100°,求∠MAN的度数.
(3) 在 (2) 中,若无AB = AC的条件,你还能求出∠MAN的度数吗?若能,请求出;若不能,请说明理由.
(10分) 阅读对人成长的影响是巨大的,一本好书往往能改变人的一生.1995年联合国教科文组织把每年4月23日确定为“世界读书日”.表(1)是该校学生阅读课外书籍情况统计表,图2是某校三个年级学生人数分布扇形统计图,其中八年级人数为408人.请你根据图表中的信息,解答下列问题:
|
(10分) 如图,在方格纸(每个小正方形边长为1)中,先把梯形ABCD向左平移6个单位长度得到梯形A1B1C1D1.
(1)请你在方格纸中画出梯形A1B1C1D1 ;
(2)以点C1为旋转中心,把 (1) 中画出的梯形绕点C1顺时针方向旋转得到梯形A2B2C2D2,请你画出梯形A2B2C2D2.
(6分)“十·一”黄金周期间,我市某景点旅游区在7天假期中每天旅游的人数变化如下表:
(正数表示比前一天多的人数,负数表示比前一天少的人数).(单位:万人)
日 期 |
1日 |
2日 |
3日 |
4日 |
5日 |
6日 |
7日 |
人数变化 |
+ 1.2 |
+ 1.2 |
+ 0.4 |
– 0.2 |
– 0.8 |
+ 0.2 |
– 1.4 |
若9月30日的旅游人数记为3万人,则
(1)请求出10月5日的旅游人数;
(2)请判断7天内旅游人数最多的是哪一天?最少的是哪一天?它们相差多少万人?
(3)若该景点门票为每人20元,请算出该景点黄金周期间的收入共多少万元?
(6分) 如图①、图②、图③……是用围棋子摆成的一列具有一定规律的“山”字.
(5) 按图示的规律填空.
图形标号 |
① |
② |
③ |
④ |
…… |
围棋子的数目(颗) |
7 |
|
|
|
|
(6) 第n个图形所对应的围棋子的数目为___________颗.
若某个图形中有围棋子142颗,它是第__________个图形.