初中数学

(本题12分)如图,ABCD是一张矩形纸片,AD=BC=1,AB=CD=5.在矩形ABCD的边AB上取一点M,在CD上取一点N,将纸片沿MN折叠,使MB与DN交于点K,得到△MNK.

(1)若∠1=70°,求∠MKN的度数.
(2)△MNK的面积能否小于?若能,求出此时∠1的度数;若不能,试说明理由.
(3)如何折叠能够使△MNK的面积最大?请你利用备用图探究可能出现的情况,求出最大值.

来源:2014-2015学年江苏省无锡市洛社初中八年级下学期期中考试数学试卷
  • 更新:2022-09-04
  • 题型:未知
  • 难度:未知

已知△ABC,以AC为边在△ABC外作等腰△ACD,其中AC=AD.

(1)如图1,若AB=AE,∠DAC=∠EAB=60°,求∠BFC的度数;
(2)如图2,∠ABC=α,∠ACD=β,BC=4,BD=6.
①若α=30°,β=60°,AB的长为;
②若改变α,β的大小,但α+β=90°,△ABC的面积是否变化?若不变,求出其值;若变化,说明变化的规律.

来源:2015届湖北省武汉市九年级元月调考模拟2数学试卷
  • 更新:2022-09-04
  • 题型:未知
  • 难度:未知

如图,矩形ABCD中,AB=8,BC=6,P为AD上一点,将△ABP沿BP翻折至△EBP,PE与CD相交于点O,且OE=OD,则AP的长为__________.

  • 更新:2022-09-04
  • 题型:未知
  • 难度:未知

如图1,将两块全等的直角三角形纸片△ABC和△DEF叠放在一起,其中∠ACB=∠E=90°,BC=DE=6,AC=FE=8,顶点D与边AB的中点重合.
(1)若DE经过点C,DF交AC于点G,求重叠部分(△DCG)的面积;
(2)合作交流:“希望”小组受问题(1)的启发,将△DEF绕点D旋转,使DE⊥AB交AC于点H,DF交AC于点G,如图2,求重叠部分(△DGH)的面积.

来源:2015-2016学年江苏省无锡市南长区八年级上学期期中考试数学试卷
  • 更新:2022-09-04
  • 题型:未知
  • 难度:未知

如图,在直角坐标系中,已知,点P从C点出发,沿着折线C﹣D﹣A运动到达点A时停止,过C点作直线GC⊥PC,且与过O、P、C三点的⊙M交于点G,连接OP、PG、OD.

(1)直接写出∠DCO的度数;
(2)当点P在线段CD上运动时,求△OPG的最小面积;
(3)设圆心M的纵坐标为n,试探索:在点P运动的整个过程中,n的取值范围.

来源:2015届福建省泉州市泉港区九年级下学期期中质检数学试卷
  • 更新:2022-09-04
  • 题型:未知
  • 难度:未知

如图,在梯形ABCD中,AD∥BC,BE平分∠ABC交CD于E,且BE⊥CD,CE:ED=2:1.如果△BEC的面积为2,那么四边形ABED的面积是

  • 更新:2022-09-04
  • 题型:未知
  • 难度:未知

如图,在△ABC中,AD是高,AE、BF是角平分线,它们相交于点O,∠BAC=50°,∠C=70°.求∠DAC和∠BOA的度数.

来源:2015-2016学年湖北省黄陂区部分学校八年级上学期9月月考数学试卷
  • 更新:2022-09-04
  • 题型:未知
  • 难度:未知

如图,在△ABC中,BA=BC,D在边CB上,且DB=DA=AC.

(1)如图1,填空∠B= °,∠C= °;
(2)若M为线段BC上的点,过M作直线MH⊥AD于H,分别交直线AB、AC与点N、E,如图2
①求证:△ANE是等腰三角形;
②试写出线段BN、CE、CD之间的数量关系,并加以证明.

  • 更新:2022-09-04
  • 题型:未知
  • 难度:未知

如图,AD⊥BC,垂足为D.CD=1,AD=2,BD=4.

(1)求∠BAC的度数?并说明理由;
(2)P是边BC上一点,连结AP,当△ACP为等腰三角形时,求CP的长.

  • 更新:2022-09-04
  • 题型:未知
  • 难度:未知

如图,在△ABC中,∠ACB=90°,AC=BC,AE为BC边上的中线,CD⊥AE于点F,BD⊥BC于点B.

(1)试说明:AE=CD;
(2)若AC=10cm,求线段BD的长.

来源:2015-2016学年江苏省无锡市北塘区八年级上学期期中考试数学试卷
  • 更新:2022-09-04
  • 题型:未知
  • 难度:未知

如图,已知∠MON=30°,点A1、A2、A3…在射线ON上,点B1、B2、B3…在射线OM上;
△A1B1A2、△A2B2A3、△A3B3A4…均为等边三角形.若OA1=1,则△A2015B2015A2016的边长为…()

A.4028 B.4030 C. D.
来源:2015-2016学年江苏省无锡市北塘区八年级上学期期中考试数学试卷
  • 更新:2022-09-04
  • 题型:未知
  • 难度:未知

如图1,已知锐角△ABC中,CD.BE分别是AB、AC边上的高,M、N分别是线段BC、DE的中点.

(1)连接DM,ME,猜想∠A与∠DME之间的关系,并写出推理过程;
(2)求证:MN⊥DE;
(3)若将锐角△ABC变为钝角△ABC,如图2,上述(1)(2)中的结论是否都成立,若结论成立,直接回答,不需证明;若结论不成立,请说明理由.

来源:2015-2016学年江苏省无锡市北塘区八年级上学期期中考试数学试卷
  • 更新:2022-09-04
  • 题型:未知
  • 难度:未知

问题提出:用n根相同的木棒搭一个三角形(木棒无剩余),能搭成多少种不同的等腰三角形?
问题探究:不妨假设能搭成种不同的等腰三角形,为探究之间的关系,我们可以从特殊入手,通过试验、观察、类比,最后归纳、猜测得出结论.
探究一:
用3根相同的木棒搭成一个三角形,能搭成多少种不同的三角形?
此时,显然能搭成一种等腰三角形。所以,当时,
用4根相同的木棒搭成一个三角形,能搭成多少种不同的三角形?
只可分成1根木棒、1根木棒和2根木棒这一种情况,不能搭成三角形
所以,当时,
用5根相同的木棒搭成一个三角形,能搭成多少种不同的三角形?
若分成1根木棒、1根木棒和3根木棒,则不能搭成三角形
若分为2根木棒、2根木棒和1根木棒,则能搭成一种等腰三角形
所以,当时,
用6根相同的木棒搭成一个三角形,能搭成多少种不同的三角形?
若分成1根木棒、1根木棒和4根木棒,则不能搭成三角形
若分为2根木棒、2根木棒和2根木棒,则能搭成一种等腰三角形
所以,当时,
综上所述,可得表①


3
4
5
6

1
0
1
1


探究二:
用7根相同的木棒搭成一个三角形,能搭成多少种不同的等腰三角形?
(仿照上述探究方法,写出解答过程,并把结果填在表②中)
分别用8根、9根、10根相同的木棒搭成一个三角形,能搭成多少种不同的等腰三角形?(只需把结果填在表②中)


7
8
9
10






你不妨分别用11根、12根、13根、14根相同的木棒继续进行探究,……
解决问题:用根相同的木棒搭一个三角形(木棒无剩余),能搭成多少种不同的等腰三角形?
(设分别等于,其中是整数,把结果填在表③中)












问题应用:用2016根相同的木棒搭一个三角形(木棒无剩余),能搭成多少种不同的等腰三角形?(要求写出解答过程)
其中面积最大的等腰三角形每个腰用了__________________根木棒。(只填结果)

来源:2015-2016学年山东省东营市恳利县八年级上学期期中考试数学试卷
  • 更新:2022-09-04
  • 题型:未知
  • 难度:未知

如图,△ABC的三个顶点和它内部的点P1,把△ABC分成3个互不重叠的小三角形;△ABC的三个顶点和它内部的点P1、P2,把△ABC分成5个互不重叠的小三角形;△ABC的三个顶点和它内部的点P1、P2、P3,把△ABC分成7个互不重叠的小三角形;……,△ABC的三个顶点和它内部的点P1、P2、P3……Pn,把△ABC分成 个互不重叠的小三角形.

来源:2015-2016学年安徽省马鞍山塘南初中八年级上学期期中数学试卷
  • 更新:2022-09-04
  • 题型:未知
  • 难度:未知

11世纪的一位阿拉伯数学家曾提出一个“鸟儿捉鱼”的问题:小溪边长着两棵棕榈树,恰好隔岸相望.一棵树高是30肘尺(肘尺是古代的长度单位),另外一棵高20肘尺;两棵棕榈树的树干间的距离是50肘尺.每棵树的树顶上都停着一只鸟.忽然,两只鸟同时看见棕榈树间的水面上游出一条鱼,它们立刻以相同的速度飞去抓鱼,并且同时到达目标.问这条鱼出现的地方离开比较高的棕榈树的树跟有多远?

来源:2015-2016学年江苏省阜宁县八年级上学期期中统考数学试卷
  • 更新:2022-09-04
  • 题型:未知
  • 难度:未知

初中数学三角形的五心试题