初中数学

(本小题满分8分)如图,平面直角坐标系中,将含30°的三角尺的直角顶点C落在第二象限.其斜边两端点A、B分别落在x轴、y轴上,且AB=12cm

(1)若OB=6cm.
①求点C的坐标;
②若点A向右滑动的距离与点B向上滑动的距离相等,求滑动的距离;
(2)点C与点O的距离的最大值.

  • 更新:2022-09-04
  • 题型:未知
  • 难度:未知

如图,△A1A2B是直角三角形,∠A1A2B=900,且A1A2=A2B=4, A2A3⊥A1B,垂足为A3,A3A4⊥A2B,垂足为A4,A4A5⊥A3B,垂足为A5,A5A6⊥A4B,垂足为A6,一直按此做去,……则△AnAn+1B的面积为

  • 更新:2022-09-04
  • 题型:未知
  • 难度:未知


(1)如图1,已知△ABC,以AB、AC为边向△ABC外作等边△ABD和等边△ACE,连接BE,CD,请你完成图形(尺规作图,保留作图痕迹),并猜想BE与CD的关系:___________;你是通过证明_______________ 得到的;
(2)如图2,已知△ABC,以AB、AC为边向外作正方形ABFD和正方形ACGE,连接BE,CD,BE与CD有什么数量关系?并说明理由;
(3)运用(1)、(2)解答中所积累的经验和知识,完成下题:
如图3,要测量池塘两岸相对的两点B,E的距离,已经测得∠ABC=45°,∠CAE=90°,AB=BC=100米,AC=AE,求BE的长.

来源:2015-2016学年浙江省杭州市萧山四校八年级上学期期中联考数学试卷
  • 更新:2022-09-04
  • 题型:未知
  • 难度:未知

如图,七星形中∠A+∠B+∠C+∠D+∠E+∠F+∠G=

来源:2015-2016学年湖北省黄冈市五校八年级上学期期中联考数学试卷
  • 更新:2022-09-04
  • 题型:未知
  • 难度:未知

小明遇到这样一个问题:已知:在△ABC中,AB,BC,AC三边的长分别为,求△ABC的面积.
小明是这样解决问题的:如图1所示,先画一个正方形网格(每个小正方形的边长为1),再在网格中画出格点△ABC(即△ABC三个顶点都在小正方形的顶点处),从而借助网格就能计算出△ABC的面积.他把这种解决问题的方法称为构图法.请回答:

(1)求图1中△ABC的面积;
参考小明解决问题的方法,完成下列问题:
(2)图2是一个6×6的正方形网格(每个小正方形的边长为1).
①利用构图法在答题卡的图2中画出三边长分别为的格点△DEF;
②计算△DEF的面积是
(3)如图3,已知△PQR,以PQ,PR为边向外作正方形PQAF,PRDE,连接EF.若PQ=,PR=,QR=,求六边形AQRDEF的面积.

  • 更新:2022-09-04
  • 题型:未知
  • 难度:未知

如图,矩形ABCD中,AB=8,BC=6,P为AD上一点,将△ABP沿BP翻折至△EBP,PE与CD相交于点O,且OE=OD,则AP的长为__________.

  • 更新:2022-09-04
  • 题型:未知
  • 难度:未知

如图1,将两块全等的直角三角形纸片△ABC和△DEF叠放在一起,其中∠ACB=∠E=90°,BC=DE=6,AC=FE=8,顶点D与边AB的中点重合.
(1)若DE经过点C,DF交AC于点G,求重叠部分(△DCG)的面积;
(2)合作交流:“希望”小组受问题(1)的启发,将△DEF绕点D旋转,使DE⊥AB交AC于点H,DF交AC于点G,如图2,求重叠部分(△DGH)的面积.

来源:2015-2016学年江苏省无锡市南长区八年级上学期期中考试数学试卷
  • 更新:2022-09-04
  • 题型:未知
  • 难度:未知

如图,在△ABC中,AD是高,AE、BF是角平分线,它们相交于点O,∠BAC=50°,∠C=70°.求∠DAC和∠BOA的度数.

来源:2015-2016学年湖北省黄陂区部分学校八年级上学期9月月考数学试卷
  • 更新:2022-09-04
  • 题型:未知
  • 难度:未知

如图,已知∠MON=30°,点A1、A2、A3…在射线ON上,点B1、B2、B3…在射线OM上;
△A1B1A2、△A2B2A3、△A3B3A4…均为等边三角形.若OA1=1,则△A2015B2015A2016的边长为…()

A.4028 B.4030 C. D.
来源:2015-2016学年江苏省无锡市北塘区八年级上学期期中考试数学试卷
  • 更新:2022-09-04
  • 题型:未知
  • 难度:未知

如图△ABC中,AB=10,AC=6,中线AD=4,则BC长是

  • 更新:2022-09-04
  • 题型:未知
  • 难度:未知

如图,△ABC的三个顶点和它内部的点P1,把△ABC分成3个互不重叠的小三角形;△ABC的三个顶点和它内部的点P1、P2,把△ABC分成5个互不重叠的小三角形;△ABC的三个顶点和它内部的点P1、P2、P3,把△ABC分成7个互不重叠的小三角形;……,△ABC的三个顶点和它内部的点P1、P2、P3……Pn,把△ABC分成 个互不重叠的小三角形.

来源:2015-2016学年安徽省马鞍山塘南初中八年级上学期期中数学试卷
  • 更新:2022-09-04
  • 题型:未知
  • 难度:未知

11世纪的一位阿拉伯数学家曾提出一个“鸟儿捉鱼”的问题:小溪边长着两棵棕榈树,恰好隔岸相望.一棵树高是30肘尺(肘尺是古代的长度单位),另外一棵高20肘尺;两棵棕榈树的树干间的距离是50肘尺.每棵树的树顶上都停着一只鸟.忽然,两只鸟同时看见棕榈树间的水面上游出一条鱼,它们立刻以相同的速度飞去抓鱼,并且同时到达目标.问这条鱼出现的地方离开比较高的棕榈树的树跟有多远?

来源:2015-2016学年江苏省阜宁县八年级上学期期中统考数学试卷
  • 更新:2022-09-04
  • 题型:未知
  • 难度:未知

如图,在△ABC中,∠ACB=90°,AC=BC,AE为BC边上的中线,CD⊥AE于点F,BD⊥BC于点B.

(1)试说明:AE=CD;
(2)若AC=10cm,求线段BD的长.

来源:2015-2016学年江苏省无锡市北塘区八年级上学期期中考试数学试卷
  • 更新:2022-09-04
  • 题型:未知
  • 难度:未知

如图所示,已知AC∥BD,EA,EB分别平分∠CAB和∠DBA,CD过E点.求证:AB=AC+BD.

来源:2015-2016学年重庆市璧山县青杠初中八年级上学期期中考试数学试卷
  • 更新:2022-09-04
  • 题型:未知
  • 难度:未知

问题提出:用n根相同的木棒搭一个三角形(木棒无剩余),能搭成多少种不同的等腰三角形?
问题探究:不妨假设能搭成种不同的等腰三角形,为探究之间的关系,我们可以从特殊入手,通过试验、观察、类比,最后归纳、猜测得出结论.
探究一:
用3根相同的木棒搭成一个三角形,能搭成多少种不同的三角形?
此时,显然能搭成一种等腰三角形。所以,当时,
用4根相同的木棒搭成一个三角形,能搭成多少种不同的三角形?
只可分成1根木棒、1根木棒和2根木棒这一种情况,不能搭成三角形
所以,当时,
用5根相同的木棒搭成一个三角形,能搭成多少种不同的三角形?
若分成1根木棒、1根木棒和3根木棒,则不能搭成三角形
若分为2根木棒、2根木棒和1根木棒,则能搭成一种等腰三角形
所以,当时,
用6根相同的木棒搭成一个三角形,能搭成多少种不同的三角形?
若分成1根木棒、1根木棒和4根木棒,则不能搭成三角形
若分为2根木棒、2根木棒和2根木棒,则能搭成一种等腰三角形
所以,当时,
综上所述,可得表①


3
4
5
6

1
0
1
1


探究二:
用7根相同的木棒搭成一个三角形,能搭成多少种不同的等腰三角形?
(仿照上述探究方法,写出解答过程,并把结果填在表②中)
分别用8根、9根、10根相同的木棒搭成一个三角形,能搭成多少种不同的等腰三角形?(只需把结果填在表②中)


7
8
9
10






你不妨分别用11根、12根、13根、14根相同的木棒继续进行探究,……
解决问题:用根相同的木棒搭一个三角形(木棒无剩余),能搭成多少种不同的等腰三角形?
(设分别等于,其中是整数,把结果填在表③中)












问题应用:用2016根相同的木棒搭一个三角形(木棒无剩余),能搭成多少种不同的等腰三角形?(要求写出解答过程)
其中面积最大的等腰三角形每个腰用了__________________根木棒。(只填结果)

来源:2015-2016学年山东省东营市恳利县八年级上学期期中考试数学试卷
  • 更新:2022-09-04
  • 题型:未知
  • 难度:未知

初中数学三角形的五心试题