初中数学

如图是某汽车行驶的路程S(km)与时间t(分钟) 的函数关系图.观察图中所提供的信息,解答下列问题

(1)汽车在前9分钟内的平均速度是       km/分;
(2)汽车在中途停了多长时间?      
(3)当16≤t≤30时,求S与t的函数关系式.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

某电子厂商投产一种新型电子产品,每件制造成本为18元,试销过程中发现,每月销售量y(万件)与销售单价x(元)之间的关系可以近似地看作一次函数y=﹣2x+100.(利润=售价﹣制造成本)
(1)写出每月的利润z(万元)与销售单价x(元)之间的函数关系式;
(2)当销售单价为多少元时,厂商每月能获得350万元的利润?当销售单价为多少元时,厂商每月能获得最大利润?最大利润是多少?
(3)根据相关部门规定,这种电子产品的销售单价不能高于32元,如果厂商要获得每月不低于350万元的利润,那么制造出这种产品每月的最低制造成本需要多少万元?

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

小明从家骑自行车出发,沿一条直路到相距2400m的邮局办事,小明出发的同时,他的爸爸以96m/min速度从邮局同一条道路步行回家,小明在邮局停留2min后沿原路以原速返回,设他们出发后经过t min时,小明与家之间的距离为s1 m,小明爸爸与家之间的距离为s2 m,图中折线OABD、线段EF分别表示s1、s2与t之间的函数关系的图象.

(1)求s2与t之间的函数关系式;
(2)小明从家出发,经过多长时间在返回途中追上爸爸?这时他们距离家还有多远?

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

已知一次函数y=kx+b的图象是过A(0,-4),B(2,-3)两点的一条直线.
(1)求直线AB的解析式;
(2)将直线AB向左平移6个单位,求平移后的直线的解析式.
(3)将直线AB向上平移6个单位,求原点到平移后的直线的距离.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,直线l1的解析表达式为:y=-3x+3,且l1与x轴交于点D,直线l2经过点A,B,直线l1,l2交于点C.

(1)求点D的坐标;
(2)求直线l2的解析表达式;
(3)求△ADC的面积;
(4)在直线l2上存在异于点C的另一点P,使得△ADP与△ADC的面积相等,请直接写出点P的坐标.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

为表彰在“深圳读书月”活动中表现积极的同学,某班级决定购买文具盒与钢笔作为奖品.已知3个文具盒、2支钢笔共需72元;1个文具盒、2支钢笔共需44元.
(1)每个文具盒、每支钢笔各多少元?
(2)时逢“元旦”,商店举行优惠促销活动,具体办法如下:文具盒九折,钢笔10支以上超出部分八折.设买x1个文具盒需要y1元,买x2支钢笔需要y2元,求y1、y2关于x的函数关系式,并写出自变量的取值范围.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

已知:一次函数y=kx+b的图象经过M(0,2),N(1,3)两点.
求:
(1)图象与x轴的交点坐标;
(2)图象与两坐标轴围成的三角形面积.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中,过点B(6,0)的直线AB与直线OA相交于点A(4,2),动点M在线段OA和射线AC上运动.

(1)求直线AB的解析式.
(2)求△OAC的面积.
(3)是否存在点M,使△OMC的面积是△OAC的面积的?若存在求出此时点M的坐标;若不存在,说明理由.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

为加强与家长的沟通,某校在家长会到来之前需印刷《致家长的一封信》等材料以作宣传,该校的印刷任务原来由甲复印店承接,其收费y(元)与印刷页数x(页)的函数关系如图所示.

(1)从图象中可看出:印刷超过500页部分每页收费     元;
(2)现在乙印刷厂表示:每页0.15元收费.另收200元的制版费,乙印刷厂收费y(元)与印刷页数x(页)的函数关系为       
(3)在给出的坐标系内画出(2)中的函数图象,并结合函数图象回答印刷页数在3000页左右应选择哪个印刷店?

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,请根据图象所提供的信息解答下列问题:

(1)当x   时,kx+b≥mx-n;
(2)不等式kx+b<0的解集是              
(3)交点P的坐标(1,1)是一元二次方程组:           的解;
(4)若直线l1分别交x轴、y轴于点M、A,直线l2分别交x轴、y轴于点B、N,求点M的坐标和四边形OMPN的面积.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

关于x的一次函数y=mx﹣2n与反比例函数的图象的一个交点A(1,﹣4),求一次函数和反比例函数的解析式.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,直线y=﹣x+b交x轴于点A,交直线y=x于点B(2,m),矩形CDEF的边DC在x轴上,D在C的左侧,EF在x轴的上方,DC=2,DE=4.当点C的坐标为(﹣2,0)时,矩形CDEF开始以每秒2个单位的速度沿x轴向右运动,运动时间为t秒.

(1)求b,m的值;
(2)矩形CDEF运动t秒时,直接写出C、D两点的坐标(用含t的代数式表示);
(3)当点B在矩形CDEF的一边上时,求t的值.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图1,在一次航海模型船训练中,A1B1和A2B2是水面上相邻的两条赛道(看成两条互相平行的线段).甲船在赛道A1B1上从A1处出发,到达B1后,以同样的速度返回A1处,然后重复上述过程;乙船在赛道A2B2上以2m/s的速度从B2处出发,到达A2后以相同的速度回到B2处,然后重复上述过程(不考虑每次折返时的减速和转向时间).若甲、乙两船同时出发,设离开池边B1B2的距离为y(m),运动时间为t(s),甲船运动时,y(m)与t(s)的函数图象如图2所示.

(1)赛道的长度是         m,甲船的速度是         m/s;
(2)分别求出甲船在0≤t≤30和30<t≤60时,y关于t的函数关系式;
(3)求出乙船由B2到达A2的时间,并在图2中画出乙船在3 分钟内的函数图象;
(4)请你根据(3)中所画的图象直接判断,若从甲、乙两船同时开始出发到3分钟为止,甲、乙共相遇了几次?

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

将长为20cm,宽为10cm的长方形白纸,按如图所示的方法粘贴起来,粘合部分的宽为2cm.设x张白纸粘合后的纸条总长度为ycm,

(1)求y与x之间的函数关系式,并画出函数图象,
(2)若x=20,求纸条的面积.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

暑假期间,小明和父母一起开车到距家200千米的景点旅游.出发前,汽车油箱内储油45升;当行驶150千米时,发现油箱剩余油量为30升.
(1)已知油箱内余油量y(升)是行驶路程x(千米)的一次函数,求y与x的函数关系式;
(2)当油箱中余油量少于3升时,汽车将自动报警.如果往返途中不加油,他们能否在汽车报警前回到家?请说明理由.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

初中数学一次函数的最值解答题