初中数学

已知2y﹣3与﹣3x﹣1成正比例,且x=2时,y=5.

(1)求y与x之间的函数关系式,并在坐标系中画出图象;
(2)若﹣1≤y≤2,求x的取值范围;
(3)若把直线向下平移3个单位长度,那么平移后的直线的解析式为      ,请画出图象.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

已知一个一次函数的图象与一个反比例函数的图象交于点P(﹣2,1)、Q(1,m).

(1)分别求出这两个函数的表达式.
(2)在同一平面直角坐标系中画出这两个函数的图象,根据图象回答,当x取何值时,一次函数的值大于反比例函数的值?

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,直线AB与x轴交于点A(1,0),与y轴交于点B(0,﹣2).

(1)求直线AB的解析式;
(2)若直线AB上的点C在第一象限,且S△BOC=2,求点C的坐标.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

一次函数y=kx+4的图象经过点A(﹣3,﹣2).
(1)求这个一次函数的关系式;
(2)判断点B(﹣5,3)是否在这个函数的图象上.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

星期天,玲玲骑自行车到郊外游玩,她离家的距离与时间的关系如图所示,请根据图象回答下列问题.

(1)玲玲到达离家最远的地方需要多长时间?离家多远?
(2)她何时开始第一次休息?休息了多长时间?
(3)她骑车速度最快是在什么时候?车速多少?
(4)玲玲全程骑车的平均速度是多少?

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

在平面直角坐标系xOy中,点A(0,4),B(3,0),以AB为边在第一象限内作正方形ABCD,直线l:y=kx+3.

(1)当直线l经过D点时,求点D的坐标及k的值;
(2)当直线l与正方形有两个交点时,直接写出k的取值范围.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,是某工程队在“村村通”工程中修筑的公路长度y(米)与时间x(天)(其中0≤x≤8)之间的关系图象.根据图象提供的信息,求该公路的长.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

一次函数y=kx+b(k≠0)的图象经过点(1,﹣3),且与y=2x平行,求这个一次函数表达式.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,直线y=kx+b经过点A(5,0),B(1,4)。

(1)求直线AB的解析式;
(2)若直线y=2x-4与直线AB相交于点C,求点C的坐标;
(3)根据图象,写出关于x的不等式2x-4>kx+b的解集。

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

甲、乙两车从A地前往B地,甲车行至AB的中点C处后,以原来速度的1.5倍继续行驶,在整个行程中,汽车离开A地的距离y与时刻t的对应关系如图所示,求:

(1)甲车何时到达C地;
(2)甲车离开A地的距离y与时刻t的函数解析式;
(3)乙车出发后何时与甲车相距20km.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图:直线y=kx+3与x轴、y轴分别交于A、B两点,tan∠OAB=,点C(x,y)是直线y=kx+3上与A、B不重合的动点.

(1)求直线y=kx+3的解析式;
(2)当点C运动到什么位置时△AOC的面积是6;
(3)过点C的另一直线CD与y轴相交于D点,是否存在点C使△BCD与△AOB全等?若存在,请求出点C的坐标;若不存在,请说明理由.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

我校实行学案教学,需印刷若干份数学学案.印刷厂有甲、乙两种收费方式,除按印数收取印刷费外,甲种方式还需收取制版费而乙种不需要.两种印刷方式的费用y(元)与印刷份数x(份)之间的关系如图所示:

(1)填空:
甲种收费方式的函数关系式是y1=            
乙种收费方式的函数关系式是y2=            
(2)如果我校2014-2015学年八年级每次印刷100~450(含100和450)份学案,选择哪种印刷方式较合算.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,已知直线y=3x+3与x轴交于点A,与y轴交于点D,与直线y=x交于点E.过点D作DC∥x轴,交直线y=x于点C,过点C作CB∥AD交x轴于点B.

(1)点C的坐标是           
(2)以线段AD的中点M为圆心作⊙M,当⊙M与直线CE相切时,求⊙M的半径;
(3)如图2,点P从点O出发,沿线段OC向终点C运动,点Q从点C出发,沿线段CD向终点D运动.若P、Q两点同时出发,速度均为1单位长度/s,时间为t/s.当p、q两点有一点到达终点时,它们均停止运动.将线段PQ绕点P沿顺时针方向旋转90°.当点Q落在四边形ABCD一边所在的直线上时,t的值为    

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

在“五•一”期间,“佳佳”网店购进A、B两种品牌的服装进行销售,已知B种品牌服装的进价比A种品牌服装的进价每件高20元,2件A种品牌服装与3件B种品牌服装进价共560元.
(1)求购进A、B两种品牌服 装的单价;
(2)该网站拟以不超过11200元的总价购进这种两品牌服装共100件,并全部售出.其中A种品牌服装的售价为150元/件,B种品牌服装的售价为200元/件,该网站为了获取最大利润,应分别购进A、B两种品牌服装各多少件?所获取的最大利润是多少?

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,点A(2,2)在双曲线y1=(x>0)上,点C在双曲线y2=-(x<0)上,分别过A、C向x轴作垂线,垂足分别为F、E,以A、C为顶点作正方形ABCD,且使点B在x轴上,点D在y轴的正半轴上.

(1)求k的值;
(2)求证:△BCE≌△ABF;
(3)求直线BD的解析式.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

初中数学一次函数的最值解答题