如图,在平面直角坐标系中,A、B均在边长为1的正方形网格格点上.
(1)求线段AB所在直线的函数解析式,并写出当0≤y≤2时,自变量x的取值范围;
(2)将线段AB绕点B逆时针旋转90°,得到线段BC,请在下图中画出线段BC.若直线BC的函数解析式为y=kx+b,则y随x的增大而 __(填“增大”或“减小”).
已知某直线经过(3,5),(-4,-9)两点,求该直线的函数解析式。
某公司在A、B两地分别有库存机器16台和12台,现要运往甲、乙两地,其中甲地需15台,乙地需13台.已知从A地运一台到甲地的运费为500元,到乙地为400元;从B地运一台到甲地的运费为300元,到乙地为600元.请你帮助算一算,怎样调运花费最省,最省为多少元?
如图,已知点A(-6,0),点B和C在y轴正半轴上,∠CAO=60°,若点B到直线AC的距离是,求直线AC的解析式和点B的坐标。
正比例函数y=2x和一次函数y=-3x+b的图象交于点P(1,m)
(1)求出m和b的值;
(2)画出函数y=2x和y=-3x+b的图象,并求出它们与y轴围成的三角形的面积。
填表
x |
0 |
1 |
y=2x |
|
|
x |
0 |
|
y=-3x+b |
|
0 |
某采摘农场计划种植两种草莓共6亩,根据表格信息,解答下列问题:
项目 品种 |
A |
B |
年亩产(单位:千克) |
1200 |
2000 |
采摘价格(单位:元/千克) |
60 |
40 |
(1)若该农场每年草莓全部被采摘的总收入为46000O元,那么两种草莓各种多少亩?
(2)若要求种植种草莓的亩数不少于种植种草莓的一半,那么种植种草莓多少亩时,可使该农场每年草莓全部被采摘的总收入最多?
有一批货,如月初售出,可获利20000元,并可将本利和再去投资,到月末还可获利1.5%;如月末售出这批货,可获利24000元,但要付1000元管理费,为了获得最大利润,请你解答下列问题:
(1)设这批货的成本为x元,在月初售出, 并将本利和再去投资共可获利y元,试用x的代数式表示y;
(2) 请你根据x值或范围分析这批货在月初售出好还是月末好?
已知,在平面直角坐标系中,直线y=2x+3与直线y=﹣2x﹣1交于点C.
(1)求两直线与y轴交点A,B的坐标;
(2)求点C的坐标;
(3)求△ABC的面积.
八年级(1)班班委发起慰问烈属王大妈的活动,决定全班同学利用课余时间去卖鲜花筹集慰问金.已知同学们从花店按每支1.2元买进鲜花,并按每支3元卖出.
(1)求同学们卖出鲜花的销售额(元)与销售量(支)之间的函数关系式;
(2)若从花店购买鲜花的同时,还总共用去40元购买包装材料,求所筹集的慰问金(元)与销售量(支)之间的函数关系式;若要筹集500元的慰问金,则要卖出鲜花多少支?(慰问金=销售额-成本)
衬衫系列大都采用国家5.4标准号、型(通过抽样分析取的平均值).“号”指人的身高,“型”指人的净胸围,码数指衬衫的领围(领子大小),单位均为:厘米.下表是男士衬衫的部分号、型和码数的对应关系:
号/型 |
… |
170/84 |
170/88 |
175/92 |
175/96 |
180/100 |
… |
码数 |
… |
38 |
39 |
40 |
41 |
42 |
… |
(1)设男士衬衫的码数为y,净胸围为x,试探索y与x之间的函数关系式;
(2)若某人的净胸围为108厘米,则该人应买多大码数的衬衫?
有甲、乙两个蓄水池,现将甲池中的水匀速注入乙池。甲、乙两个蓄水池中水的深度(米)与注水时间(小时)之间的关系如图所示,根据图像提供的信息,回答下列问题:
(1)注水前甲池中水的深度是_____________米。(直接写出答案)。
(2)求甲池中水的深度(米)与注水时间(小时)之间的函数关系式;
(3)求注水多长时间时,甲、乙两个蓄水池中水的深度相同。
已知一次函数的图象经过点A(-2,-3)及点B(1,6).
(1).求此一次函数的解析式.
(2).判断点C(,2)是否在函数的图象上.
某公路的同一侧有A、B两个村庄,若以公路所在的直线为x轴建立平面直角坐标系,A、B两点的坐标分别为(1,2)、(4,1),如图所示。要在公路边上(即x轴)建一仓库,把货物运往A、B两地。试问:在公路边上是否存在一点C,使运货的路程最短。若存在,求出C点的坐标;若不存在,请说明理由。(要求写出运算过程)
已知动点在函数的图象上,且点P在第一象限,点A的坐标为(4,0),设△OPA的面积为S.
(1)用含的解析式表示S,并求出的取值范围;
(2)求S=8时,点P的坐标.